
J.M.S. Page 1 of 6 20-MAR-90

TRAPPING &
MASS PRODUCING

KNOWLEDGE

 Author: Jeffrey M. Setterholm
Lakeville, Minnesota

(612) 461-3445
 952

© March 20, 1990
All Rights Reserved

Appendix A: An example of trapped technical knowledge

- added March 11, 1993

I place this document & Appendix A in the
PUBLIC DOMAIN

 January 20th, 2017

The last page has relevant links.

J.M.S. Page 2 of 6 20-MAR-90

TRAPPING & MASS PRODUCING KNOWLEDGE

Initial Emphasis: Technology

 Jeffrey M. Setterholm
 Lakeville, Minnesota
 © March 20 1990

 ALL RIGHTS RESERVED

INTRODUCTION

 The Greater Minnesota Corporation seeks to develop and implement a
blueprint for regional vitality. People raised in the region perceive
improving education as an integral part of that vitality. Thus,
Education is an area already under scrutiny.
 A major goal of education is to increase the student’s ability to
apply knowledge: to solve problems, to understand phenomena, and to
achieve desired objectives. But in order to teach or apply knowledge
efficiently, first it needs to be available... efficiently available.

 This paper explores a new strategy for improving education.
Potential impact of this strategy on regional vitality, a complex issue,
is also addressed.

Four claims:

1) Enormous amounts of knowledge are being lost or re-created from
one generation to the next.

2) As a WASTE-SAVING measure, the systematic TRAPPING of knowledge

into the public domain deserves substantial support.

3) Education can be well-served by the knowledge trapping activity

through the MASS PRODUCTION of KNOWLEDGE.

4) Regional economic vitality can be well served through MASS

PRODUCTION of the HARDWARE and software that simplifies
interaction with the knowledge.

While these claims apply to most areas of knowledge, this paper focuses
on technical knowledge because I understand how to efficiently trap it.

APPROACH OVERVIEW

 The capabilities of unaided human memory are quite unpredictable and
vastly overrated by both academia and the popular press. Computers, on
the other hand, are extremely predictable and vastly underrated. Hence,
a partnership of mind and computer is proposed… with the actual
knowledge storage occurring in the reliable, exercisable, tireless,
patient, objective, replicative, explicit, time-invariant, observable,

J.M.S. Page 3 of 6 20-MAR-90

precise impartial half of the partnership… the computer. Executable
computer source code is the central storage media.
 For technical knowledge, the key elements of the TRAPPING process
are source code, simplification, and synergism. As that source code is
created, debugged, and refined, it will be mass produced at low cost on
an annual revision basis. Communication among knowledge trappers,
educators, and manufacturers will yield synergistic benefits. People in
the region will learn what to teach, how to teach it so it stays taught,
and offer the systems that make it happen… for mankind’s use and
enjoyment. An efficient regional industry of hardware/software mass
production for A)computing and for B)human/knowledge interaction will be
sustained.

CLAIMS DISCUSSION

CLAIM #1: Inter-Generational Knowledge Loss

 Most people have not considered inter-generational knowledge loss to
be a major problem... many have been lulled into complacency about the
knowledge situation by articles in the popular press which describe how
rapidly human knowledge is growing.
 A key cause of the knowledge loss is that individuals choose not to
reveal it. Examine your personal experience: how many masters of
technology have you personally known who left their company or went to
their grave without leaving anyone in their class behind? How much
development work is being done in organizations to re-create
capabilities and understandings that existed in the past?
 Another cause of knowledge loss is disrespect for simplicity.
Perhaps this isn’t obvious. In my direct experience in R&D, all the
things I worked on became simpler over time. Yet, the world seemed to
become progressively more complex. In response to this personal paradox,
I developed “Complexity Theory”:

Q. Given that individual understanding simplifies over time,
why doesn’t society as a whole simplify over time? A: People
are paid and promoted based on the perceived complexity of
what they do. Both in government and industry, technologists
usually respond by doing work that appears complex. But they
squander their limited mental resources in the process and
overall progress is slowed.
 Only the simple solutions to problems THAT MANY OTHER
PEOPLE HAVE FAILED TO SOLVE are respected. That’s because
there is presently no way to judge the difficulty of solving
a totally new problem. When a simple solution is found to a
totally new problem, people tend to assume that it was a
simple problem. The idea that it was a gifted technologist
who solved it seldom enters their minds… particularly if the
creative individual is not already well known. (Consider
also that an “opportunity” isn’t considered to be a “problem”
until a lot of effort has been expended trying to realize the

J.M.S. Page 4 of 6 20-MAR-90

opportunity.) Thus, comparatively few technologists work on
new opportunities in simple ways.

 Widespread public recognition of the contributions will be a key
incentive for technologists to contribute knowledge to the public
domain. Previously UNTAPPED knowledge can be trapped. Being able to
trap the technical knowledge of each generation would save an ENORMOUS
WASTE. The mechanics of the trapping process are discussed in the next
section.

CLAIM#2: Knowledge Trapping Can Be Done Efficiently.

 What I propose is to TRAP and SIMPLIFY relevant applied mathematics
in functional SOURCE CODE modules. Then, organize the modules in such a
way that they can stand alone OR INTERACT with other modules. Note that
fragments of technical knowledge are routinely trapped in software.
Such software is often not clearly written and is seldom simplified.
 The primary benefit of SIMPLIFICATION is that personal mental
resources are freed up to consider new things. Free mental resources
are the margin in which efficient progress occurs. (Complexity, which
ties up mental resources, and affordable progress tend to be opposed.)
 It is also important that the modules INTERACT with one another
efficiently as well as stand alone. If the inter-relationships between
modules are worked out properly, then an interested user can examine the
connections. The user who isn’t interested in the mechanics of correct
interaction can ignore that aspect.
 Experience has convinced me that software capability can increase
much more rapidly than the number of lines of source code. Working in
flight simulation, using an annual software revision/condensation
approach, I found that the core source code listing stayed at about
constant size while the functionality expanded synergistically. Consider
the following example:

The last application of the simulation software (in 1984)
was to study the manual docking of the Orbital Maneuvering
Vehicle (OMV) with the space telescope in low Earth orbit.
In retrospect, two key analytical pieces were missing:
iterative orbital mechanics and double precision position.
The absence of orbital mechanics was obvious... and in
essence became three lines of FORTRAN. The need for double
precision became obvious the first time I had hands-on
experience flying the OMV... both the telescope and my
vehicle were bumping along on the least significant bits
defining where they were! It was visually obvious. All in
all, adding about twenty lines of FORTRAN to the core
software generalized the capabilities to include Earth
orbit. Developing the simulation took only about two
weeks.

The approach being advocated here is different from the approach
commonly used today. The prevailing approach is to develop a module and

J.M.S. Page 5 of 6 20-MAR-90

freeze it. The (roughly) 20,000,000 bytes of disk space required by a
pared-down UNIX operating system (for an HP-9000 computer in 1987) is a
consequence of the ‘freeze the module’ approach.
 It is far too early to tell how large the core source code for
trapped technical knowledge might become. My long term dream is 20,000
lines of code… less than one and a half million characters (bytes) of
source code… each module capable of standing alone… each model capable
of interacting with other modules.

 The Greater Minnesota Corporation is focusing on education because
it’s commonly perceived to be the core problem. But identifying what to
teach deserves as much attention as improving the teaching itself. The
knowledge trapping activity is concerned with condensing knowledge in a
utilizable, examinable form. When that has been done well, the
groundwork is laid for effective education… which is discussed in the
next section.

CLAIM#3: The Mass Production of Knowledge

 What I propose is the mass production of software source code and
associated documentation that is so simple, so elegant, and so useful
that it becomes an integral part of the technical foundation of the
future… an integral part of what is known.
 Mass produced applied mathematics is hard to imagine. Beyond +,-,x,
& ÷, the sine and cosine of an angle are rare examples of widely
accessible mathematical functions. They are so accessible (e.g. on
pocket calculators) and so standardized that they are taken for granted
and are essentially free. For almost all other math functions, a fairly
expensive technically astute person or a fairly expensive commercial
software product utilizes them.
 Executable software without source code delivers capability without
providing access to the underlying understanding of the process. Using
this approach, many software developers hide their know-how to aid in
recovery of their technical development costs. Products result, but
overall there is a great deal of waste associated with knowledge hiding.
Knowledge is re-created over and over… between companies, across
generations, in classrooms, between nations. Competitors develop a
comparable set of capability because knowing that a problem is solvable
is the major hurdle to finding a solution. Those who are not in
competition are denied the opportunity to apply the techniques in fields
unrelated to the commercial interests of the software developers.

 The technical education situation might be summarized as follows:

Human technical progress is slowed
because the analytical trails

leading to the frontiers of science
don’t have readily usable maps.

I am calling into question the assumption that the U.S. will be more of
an “information society” than the rest of the world by the year 2010.
The sheer number of foreign technologists that we have trained (and

J.M.S. Page 6 of 6 20-MAR-90

continue to train) in our Universities decreases the probability of that
outcome. Neither knowledge trapping itself nor the associated enhanced
education is likely to improve the RELATIVE vitality of the region
because the educational benefits will accrue to everyone. At the same
time, not pursuing them will be very disadvantageous to the region. How
to serve the region’s relative vitality is discussed in the next
section.

CLAIM#4: Mass Production of Knowledge Interaction Equipment.

 Mass production manufacturing is where the fundamental social
utility of companies lies. Economies of scale support thorough product
design, reduce unit manufacturing costs, improve long term product
support, and encourage embedded product utilization in other systems.
But mass produced SOFTWARE faces the problem that the cost of
reproducing it is practically zero once the first copy is in final form.
(The constructs that make it expensive, such as copyrights, are entirely
artificial.) Thus, I recommend that the regional industry which mass
produces the HARDWARE associated with knowledge interaction receive at
least as much nurturing as the corresponding software industry. Both
hardware and software mass production should be encouraged. By shaping
the core knowledge here in the public sector, regional hardware and
software designers and regional educators will have advance notice of
new trends and can influence the trapping process itself.
 It is worth considering that improving people’s ability to apply
knowledge can lead to more leisure time: that, in turn, can lead to a
(long-overdue) four day workweek. With alternative Fridays and Mondays
off, everyone would have 26 four day weekends in a year. The recreation
sector of the region’s economy would be one of the beneficiaries. This
would be in keeping with my belief that human destiny is to have fun…
because it’s the one thing that computers can’t do!

CONCLUSION

 Knowledge is cumulative over time. By focusing on the trapping and
simplification of knowledge, we can accelerate its accumulation. By
timely, effective communication among knowledge trappers, educations,
and manufacturers, the knowledge structures, teaching techniques,
software, and enabling hardware can come together in cost effective,
synergistic, mass produced systems serving a world market. Focus of
TECHNOLOGY first. As the technical knowledge trapping activity bears
fruit, regional interest in non-technical knowledge trapping will grow.
While the region’s technical advantage may be transient, the impact on
cumulative technical knowledge will be permanent. The region has the
option of being remembered, in history, as the place where WORLD
education was born in 1990.

 W.L.L. Response Page 1 of 1 April 16, 1991 -

I sent “TRAPPING & MASS PRODUCING KNOWLEDGE” to scores of individuals;
e.g., my College Physics Professor’s response:

 Appendix A: DFT’s Page 1 of 4 11-MAR-93 -

Appendix A: An example of trapped technical process knowledge:

Computing Discrete Fourier Transforms (DFT’s).

 Page Description
 A-1 FORTRAN source code (The Trapped Knowledge!)
 A-2 A test program which exercises the source code
 & a printout of the output that results.
 A-3 BASIC Source Code/Program which shows the
 Computations in more detail.
 A-4 An exercise for the reader & output
 From the BASIC program.

 The FORTRAN source code below is not meant to be self-explanatory.
The code traps, in a very compact way, how DFT’s work, and provides a
software tool for performing the computation.

 SUBROUTINE DFT(NSAMPLES,SAMPLES,DFTCOES)
C 25 JANUARY 1993 1200L Version - 486:33/DrDOS/uSF5.1 - JMS
C Discrete Fourier Transform Implementation (Indexed: 0:(NSAMPLES-1))

 DOUBLE COMPLEX
 . DFTCOES(0:(NSAMPLES-1))
 .,SAMPLES(0:(NSAMPLES-1))
 .,COSI(0:99)
 DOUBLE PRECISION
 . ANGLE
 .,PI2

 PI2=8.D0*DATAN(1.D0)
 IF(NSAMPLES.GT.100) STOP 'subDFT: NSAMPLES>100'
 NSM=NSAMPLES-1
C Compute the sines and cosines used in the transformation

C Compute the fourier coefficients

 RETURN
 END

REF: “Fourier”, p. 168, Mathematics Dictionary, Ed. Glenn James &
Robert C. James, New York, Van Nostrand Reinhold, 5th Ed. 1992.

 DO 10 N=0,NSM
 ANGLE =PI2*N/NSAMPLES
 10 COSI(N)=DCMPLX(DCOS(ANGLE),DSIN(ANGLE))

 DO 30 N=0,NSM
 DFTCOES(N)=(0.D0,0.D0)
 DO 20 ND=0,NSM

 NA=MOD(N*ND,NSAMPLES)
 20 DFTCOES(N)=DFTCOES(N)+SAMPLES(ND)*COSI(NA)
 30 DFTCOES(N)=DFTCOES(N)/NSAMPLES

 Appendix A: DFT’s Page 2 of 4 11-MAR-93 -

 Trapping how DFT’s actually work may seem hopelessly esoteric to
many readers. Yet, it is an elementary concept in digital signal
processing. Trapping technical knowledge (through the sophomore year of
college will involve trapping thousands of other processes which will
appear equally esoteric to non-technologists.

 “Knowledge trapping” and “educating” are somewhat distinct
endeavors. Knowledge trapping concerns expressing useful, working
processes in simple, compact ways. Education concerns making processes
relevant, accessible, and user-friendly to students.

 Establishing the trapped processes to either stand alone or co-
operate is vital. The resulting integration of knowledge across
technical disciplines could enhance communication between educators in
different fields, and hence help unify curricula.

__
A FORTRAN program to exercise subroutine DFT (listed on page A-1):

 PROGRAM DFTTEST
C 25 JANUARY 1993 1200L Version - 486:33/DrDOS/uSF5.1 - JMS
C Program to exercise subroutine DFT

 DOUBLE COMPLEX
 . DFTCOES(0:4)
 .,SAMPLES(0:4)

 SAMPLES(0)=(.1D0,0.D0)
 SAMPLES(1)=(.2D0,0.D0)
 SAMPLES(2)=(.3D0,.1D0)
 SAMPLES(3)=(.4D0,0.D0)
 SAMPLES(4)=(.3D0,0.D0)

 WRITE(6,8) (I,SAMPLES(I),I=0,4)
 8 FORMAT(1x,'DFTTEST: Input Dataset' ,5(/1X,I2,2F14.8))
 CALL DFT(5,SAMPLES,DFTCOES)
 WRITE(6,9) (I,DFTCOES(I),I=0,4)
 9 FORMAT(1x,' Fourier Coefficients',5(/1X,I2,2F14.8))
 END

The resulting output:

DFTTEST: Input Dataset
 0 0.10000000 0.00000000
 1 0.20000000 0.00000000
 2 0.30000000 0.10000000
 3 0.40000000 0.00000000
 4 0.30000000 0.00000000
 Fourier Coefficients
 0 0.26000000 0.02000000 <These numbers were re-generated
 1 -0.07411638 -0.04695718 using the FORTRAN source code
 2 0.00138181 0.01344577 and agree with the BASIC output
 3 -0.03666045 -0.00108509 (the original values differed).
 4 -0.05060497 0.01459650

 Appendix A: DFT’s Page 3 of 4 11-MAR-93 -

10 CLS :KEY OFF :USER$="___" :COLOR 15
11 PRINT "DISCRETE FOURIER TRANSFORM EVALUATION PROGRAM" :COLOR 3
12 PRINT "Source code: DFTEP.BAS 01-25-1993 10:00 cst version JMS":COLOR 11
13 PRINT "Runtime:"; TAB(27); DATE$; " "; TIME$; " "; USER$:COLOR 7
20 REM ***** Define Example [%:integer, #:double precision, $:alphanumeric]
25 NDATS%=5 :REM Number of complex datapoints (5)
30 NM%=NDATS%-1 :REM - indexing will be from 0 to (NDATS%-1)
35 TIMEINC#=.1# :REM Time increment between datapoints (in seconds)
40 DIM SR#(NM%), SI#(NM%) :REM SR#=Signal Real part, SI#=Signal Imaginary part
45 DATA .1#,0#,.2#,0#,.3#,.1#,.4#,0#,.3#,0# :REM the 5 points are complex
pairs
50 FOR ND%=0 TO NM%: READ SR#(ND%),SI#(ND%):NEXT ND%:REM Input data is defined
55 DIM WR#(NM%),WI#(NM%) :REM WR#=Cosine term (real), WI#=Sine term
(imaginary)
60 DIM FR#(NM%),FI#(NM%) :REM FR#=Fourier Real part, FI#=Fourier Imaginary
Part
65 PI2#=8#*ATN(1#) :REM PI*2
70 REM ***** Compute the Sine and Cosine Terms Used by the Fourier Transform
 75 FOR N%=0 TO NM%
 80 WR#(N%)=COS(PI2#*N%/NDATS%)
 85 WI#(N%)=SIN(PI2#*N%/NDATS%)
 90 NEXT N%
95 REM ***** Compute the Fourier Transform
 100 FOR N%=0 TO NM%
 105 FR#(N%)=0#: FI#(N%)=0#
 110 FOR ND%=0 TO NM%
 115 NCS%=N%*ND% MOD NDATS%
 120 FR#(N%)=FR#(N%)+SR#(ND%)*WR#(NCS%)-SI#(ND%)*WI#(NCS%)
 125 FI#(N%)=FI#(N%)+SR#(ND%)*WI#(NCS%)+SI#(ND%)*WR#(NCS%)
 130 NEXT ND%
 135 FR#(N%)=FR#(N%)/NDATS%
 140 FI#(N%)=FI#(N%)/NDATS%
 145 NEXT N%
150 REM ***** Reconstruct the Signal
155 DIM YR#(NM%), YI#(NM%): REM YR#=Signal Real part, YI#=Signal Imaginary
part
 160 FOR ND%=0 TO NM%
 165 YR#(ND%)=0#: YI#(ND%)=0#
 170 FOR N%=0 TO NM%
 175 NCS%=ND%*N% MOD NDATS%
 180 YR#(ND%)=YR#(ND%)+FR#(N%)*WR#(NCS%)+FI#(N%)*WI#(NCS%)
 185 YI#(ND%)=YI#(ND%)-FR#(N%)*WI#(NCS%)+FI#(N%)*WR#(NCS%)
 190 NEXT N%
 195 NEXT ND%
200 COLOR 14: PRINT "Points Sreal Simaginary Time D
 omain (Input Signal)":COLOR 7
205 FOR N%=0 TO NM%:PRINT USING"#### ########.######## ########.######## ####
 ##.###### sec.";N%,SR#(N%),SI#(N%),TIMEINC#*N%: NEXT N%
210 COLOR 14: PRINT "Coeffs Freal Fimaginary Freque
 ncy Domain (Fourier)":COLOR 7
215 HZ#=1#/(TIMEINC#*NDATS%)
220 FOR N%=0 TO NM%:PRINT USING"#### ########.######## ########.######## ####
 ##.###### Hz";N%,FR#(N%),FI#(N%),N%*HZ#: NEXT N%
225 COLOR 14: PRINT "Points Yreal Yimaginary Time D
 omain (Reconstruction)":COLOR 7
230 TIMEOUT#=1#/(HZ#*NDATS%)
235 FOR N%=0 TO NM%:PRINT USING"#### ########.######## ########.######## ####
 ##.###### sec.";N%,YR#(N%),YI#(N%),TIMEOUT#*N%:NEXT N%
240 END

 Appendix A: DFT’s Page 4 of 4 11-MAR-93 -

DISCRETE FOURIER TRANSFORM EVALUATION PROGRAM
Source code: DFTEP.BAS 01-25-1993 10:00 cst version JMS
Runtime: 01-25-1993 10:28:20 ___
Points Sreal Simaginary Time Domain (Input Signal)

 0 0.000000 sec.
 1 0.100000 sec.
 2 0.200000 sec.
 3 0.300000 sec.
 4 0.400000 sec.

Coeffs Freal Fimaginary Frequency Domain (Fourier)
 0 0.26000000 0.02000000 0.000000 Hz
 1 -0.07411635 -0.04695721 2.000000 Hz
 2 0.00138183 0.01344576 4.000000 Hz
 3 -0.03666042 -0.00108510 6.000000 Hz
 4 -0.05060496 0.01459647 8.000000 Hz
Points Yreal Yimaginary Time Domain (Reconstruction)
 0 0.10000011 -0.00000008 0.000000 sec.
 1 0.19999994 -0.00000000 0.100000 sec.
 2 0.29999998 0.10000001 0.200000 sec.
 3 0.39999997 0.00000002 0.300000 sec.
 4 0.29999993 -0.00000001 0.400000 sec.

An Exercise: To appreciate the utility of the source code, try
computing the Discrete Fourier Transform for the signal data (in the box
above) without using this appendix as a resource. Use public library
resources as a starting point. Wait to compare your DFT coefficients
with the ones above until after you’re sure you’ve got the right answer.

There are several hurdles to cross:
1. Finding the Discrete Fourier Transform equation.
2. Writing an Algorithm that implements the equation.
3. Programming the equation in a compatible computer language
 That supports the math operations of the algorithm.
4. Debugging the resulting software. (Note, there is some variation in
the scaling of DFT coefficients; the values shown above were normalized
by the number of samples… see lines 135 and 140 in the basic program.)

 The above steps involve dealing with information in several
different disciplines. Most people don’t have the time to work out these
details to the point of being confident of having the correct solution.
Manually computing the very simple five point signal given here is not
routinely practical. Computers will be used to compute DFT’s; as a tool,
DFT’s are not taught until they are automatically computable.

 The essence of the transform, as a tool, is expressed in nine lines
of FORTRAN on page A-1. The compact representation is well suited for
embedding the transform in other pieces of software. Educators
encountering DFT’s for the first time should be comforted to know that
the implementation can be so simple.

0.10000000 0.00000000
0.20000000 0.00000000
0.30000000 0.10000000
0.40000000 0.00000000
0.30000000 0.00000000

 Links Page 1 of 1 January 20, 2017 -

LINKS:

My subsequent technical knowledge trapping activities include:
“quantitative Visual Presence”:
http://ftp.setterholm.com/Geodesy/quantitativeVisualPresence11.pdf & (2009)
http://ftp.setterholm.com/Geodesy/qVPMath12-AppendixA-20091211.pdf
“Homogeneous Optics”:
http://ftp.setterholm.com/Optics/H-Optics08.pdf (2010)
“Hyperspace Algebra Tools”:
http://ftp.setterholm.com/PseudoInverse/Hat.pdf (2011)
~A 3D(Stereo) Homogeneous Visualization Environment:
http://ftp.setterholm.com/3DEnvC/3DEnv.pdf (2016)

An overview of my website:
http://ftp.setterholm.com/Directory.pdf (2016)

A meta-philosophy (version 2.0) encompassing the ideas proposed herein:
http://ftp.setterholm.com/Philosophy/LTDW20.pdf (2004)
Robust philosophy is the foundation of robust decision making.

