
3DEnv Visualization Transforms Version 0.61 Page 1 of 4 July 12, 2016

The text below is extracted from source code posted in a .zip file at:
http://ftp.setterholm.com/3DEnvC .

… in unzipped file '3DEnv.c' in function 'SeeFrustums()'.

The text is visualized in application:
 3DEnv.exe, Version 0.6, dated July 10, 2016
by entering: App-F8 'V' 'b' and using the '+-' keys to scroll the live text.

The explicit realization of the transforms below as ‘C’source code
 is achieved by '3DEnv.h' -&-
 '3DEnv.c' in function 'HindSight()' - lines 1515-2007.

Author email: jeff.setterholm@gmail.com

 Use these results at your own risk.

2D/3D Visualization Transforms: (Public Domain)

Projection Matrix \"Concatenation\" Sequence (six matrices) :

#1. Offset model by X=X+D & Y=Y-E*LR : <-- Welcome to
| +1 , 0 , 0 , +D | LR =-1. for left eye HindSight!!
| 0 , +1 , 0 , -E*LR | = 0. for perspective
| 0 , 0 , +1 , 0 | =+1. for right eye
| 0 , 0 , 0 , +1 |

#2. Project YZ onto plane X=D & map X->[-1,+1] :
| +Bnf, 0 , 0 , +Mnf |
| 0 , +D , 0 , 0 |
| 0 , 0 , +D , 0 |
| +1 , 0 , 0 , 0 |

#3. Offset model by Y=Y+E*LR :
| +1 , 0 , 0 , 0 |
| 0 , +1 , 0 , +E*LR |
| 0 , 0 , +1 , 0 |
| 0 , 0 , 0 , +1 |

#4. Y->[-1,+1], Z->[-1,+1] :
| +1 , 0 , 0 , 0 |
| 0 , +Mlr, 0 , +Blr |
| 0 , 0 , +Mtb, +Btb |
| 0 , 0 , 0 , +1 |

3DEnv Visualization Transforms Version 0.61 Page 2 of 4 July 12, 2016

#5. Screen subsetting for split-screen 3D modes :
| +1 , 0 , 0 , 0 |
| 0 , +Ms , 0 , +Bsh | <-- Screen- horizontal- scale factors
| 0 , 0 , +Ms , +Bsv | <-- - vertical
| 0 , 0 , 0 , +1 | Adjusting L,R,T,& B turns this into
 an identity matrix... the factors go away.

#6. Convert to OpenGL(Y,-Z,X) left-handed coordinates :
| 0 , +1 , 0 , 0 |
| 0 , 0 , -1 , 0 |
| +1 , 0 , 0 , 0 |
| 0 , 0 , 0 , +1 |

The concatenated projection matrix is #6<#5<#4<#3<#2<#1 :
|+Ms*(+Mlr*E*LR+Blr)+Bsh ,+Ms*Mlr*D , 0 ,+Ms *D*(Blr+Bsh)|
|-Ms* Btb -Bsv , 0 ,-Ms*Mtb*D ,-Ms *D(*Btb-Bsv)|
|+Bnf , 0 , 0 , +D *Bnf+Mnf |
|+1 , 0 , 0 , +D |
 ... per my symbolic matrix concatenator & inverter;
 such a tool saves a lot of time & error.
 (Permutations can be evaluated symbolically.)

As implemented in function 'HindSight':
 Substitute: 'e'=LR*E
'd'= D, but in the orthographic chase 'd'=infinity ...very large is close.
 In split screen 3D,the left and right sides of the viewing frustums
 are fudged. L,R,T,& B are modified to l,r,t,& b, centering & shrinking the
 individual eye views onto their respective sides of the screen.
 Peripheral dissimilarities, large or small, are clipped away.

#2/#4's bias & scaling factors map the viewing volume into a +-1 unit cube:

 Mnf = 2.*(N+d)*(F+d)/(N-F);Bnf=-((N+F)+2.*d)/(N-F);//~y=Mx+B for depth **
 Mlr = 2. /(r-l);Blr=- (r+l) /(r-l);// y=Mx+B for lateral
 Mtb = 2. /(b-t);Btb=- (b+t) /(b-t);// y=Mx+B for vertical

 ** Note: depth isn't really linear. If N=-D/2. and F=+infinity,
 XS0 would still exactly coincide with the modelspace origin, & the
ability to resolve depth in the near field of view would remain excellent.
 For zero screen depth at X=0., use:
 N = -D*F/(D+2.*F) when: F & D are predefined.
 F = -D*N/(D+2.*N) when: N & D \" \" & if: N= -D/ a
 D = -2._16*F*N/(F+N) when: F & N \" \" then: F= +D/(a-2.)
 Thus 'Depth Selfie's become a little easier to interpret.'

 Each eye's frustum (a homogeneous matrix) is defined
 in the next five lines of code:
h44Fill(h44 , //Visually: this is
 (+Mlr*e+Blr),(+d*Mlr),(0),(+d*Blr), // the exact
 (-Btb),(0),(-d*Mtb),(-d*Btb), // symbolic
 (+Bnf),(0),(0),(+d*Bnf+Mnf), // homogeneous
 (+1),(0),(0),(+d));// solution.

... except in the ORTHOGRAPHIC Case...
 when D=Infinity, the matrix terms blow up.
Algebraically dividing all the terms of the above matrix by 'd' yields:
h44Fill(h44 ,
 (0.e0),(2.e0/(R-L)),(0.e0),(-(R+L)/(R-L)),
 (0.e0),(0.e0),(-2.e0/(B-T)),((B+T)/(B-T)),
 (-2.e0/(N-F)),(0.e0),(0.e0),(0.e0),

3DEnv Visualization Transforms Version 0.61 Page 3 of 4 July 12, 2016

 (0.e0),(0.e0),(0.e0),(1.e0));

The projection matrix is 'Zoomed' by variable S.FovYZzoom which divides
L,R,T,& B at the outset; zooming does not affect the screen depth range.

Use function 'PAhXR' for 6dof control of your model, which HindSight uses
- with position zeroed - to generate the model rotation matrix (3dof).

The rotation concatenation sequence in Flight Simulation coordinates is:
#1. Roll: positive Roll rotates +Y toward +Z , ~inner gimbal
| +1 , 0 , 0 , 0 |
| 0 , +cR , -sR , 0 | sR= sine(Roll)
| 0 , +sR , +cR , 0 | cR=cosine(Roll)
| 0 , 0 , 0 , +1 |

#2. Pitch: positive pitch rotates +Z toward +X, ~middle gimbal
| +cP , 0 , +sP , 0 |
| 0 , +1 , 0 , 0 | sP= sine(Pitch)
| -sP , 0 , +cP , 0 | cP=cosine(Pitch)
| 0 , 0 , 0 , +1 |

#3. Yaw: positive yaw rotates +X toward +Y ~outer gimbal
| +cY , -sY , 0 , 0 |
| +sY , +cY , 0 , 0 | sY= sine(Yaw)
| 0 , 0 , +1 , 0 | cY=cosine(Yaw)
| 0 , 0 , 0 , +1 |

The concatenated pure rotation matrix #3<#2<#1 is:
| cy*cp, cy*sp*sr-sy*cr, cy*sp*cr+sy*sr, 0 |
| sy*cp, sy*sp*sr+cy*cr, sy*sp*cr-cy*sr, 0 |
| -sp, cp*sr , cp*cr , 0 |
| 0 , 0 , 0 , +1 |

Each of the upper-left 3x3 sub-matrices in the four matrices above
is a 'Direction Cosine Matrix', because the numerical values are the
cosines of the projection of each input axis onto each output axe...
which is why the result is a rigid rotation rather than a warp/'morph'.
For pure rotation matrices- the transpose is the inverse.
Direction Cosine matrices, once populated with numbers, are independent of
the 'angles' used to compute them. But if you don't know in which
directions +X,+Y,& +Z are point, you've got a problem!

3DEnv Visualization Transforms Version 0.61 Page 4 of 4 July 12, 2016

In real-world processes - like manufacturing or navigating - not knowing
the Six Degree-Of-Freedom (6dof) coordinate frame you're working in
puts you on perilous ground. Questions to ask:
 Where is the origin?
 Where do +X, +Y, & +Z point, & what is the unit of measurement? Meters?
 How are rotations defined & what is the unit of measurement? Degrees?

HindSight's 3D viewer uses: "Standard Flight Simulation Coordinates"
 in ModelView space, described at/in:
 www.setterholm.com in the /Geodesy subdirectory:
 'qVPMath12-AppendixA-20091211.pdf'

Note: 'Quaternions' provide another way of implementing model rotation
 which has no specific gimbal sequence, but instead exactly
 rotates around an arbitrarily-chosen axis. (The math is complex.)

The Model Translation & Scaling Sequence (two matrices,4dof):

#1. ReCenter on (i.e. translate to) the 'Point of interest':
| +1 , 0 , 0 , -PoIX |
| 0 , +1 , 0 , -PoIY |
| 0 , 0 , +1 , -PoIZ |
| 0 , 0 , 0 , +1 |

#2.\"Scale\" (i.e. 3D Magnify):
| +Scale, 0 , 0 , 0 |
| 0 , +Scale, 0 , 0 |
| 0 , 0 , +Scale, 0 |
| 0 , 0 , 0 , +1 |

Which concatinates to:
 h44Fill(PoIScaleh44,
 (Scale), (0.e0), (0.e0), (-Scale*PoIX),
 (0.e0), (Scale), (0.e0), (-Scale*PoIY),
 (0.e0), (0.e0), (Scale), (-Scale*PoIZ),
 (0.e0), (0.e0), (0.e0), (1.e0));

The Clipping Planes:

Geometric planes are defined by a surface 'normal' (= 'perpendicular')
vector and a distance. In the frustum(s) viewer - the directions of
the four clipping plane normals are displayed & scaled to exactly touch
their respective clipped planes.
 Clipping plane algebraic coefficients are shown on screen App-F8 'v'.

Press 'v' to see the numerical values live.

Press 'b' to view: the eye viewpoints(s) -&-
 ...from here the projection frustum(s) -mapped by inversion -&-
 & 's' the clipping plane normals.

3DEnv/HindSight, Version 0.6, July 10,2016 Author: Jeffrey M. Setterholm
 8095 230th St. E.
 Lakeville, Minnesota 55044

 Use these results at your own risk.

