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Solve for A, B, & C in the example algebra problem:         Output#1   Hints: 
  Equation#1:  1.00 * A + 0.20 * B + 0.30 * C =  1.10    A =  1.0 
  Equation#2:  0.30 * A + 1.00 * B + 0.10 * C =  2.20    B =  2.0 
  Equation#3:  0.10 * A + 0.20 * B + 1.00 * C = -0.50    C = -1.0 
 
This problem has:   three equations:         (K=3) 
                    with one output:         (L=1)  
                  in three unknowns: A,B,& C (N=3) 
 
HAT is a software tool for people (who already know Algebra 1) to begin  solving: 
 

                                           K-equations,                                with 
                                                        L-outputs,                       in 
                                                                    N-unknowns  … for  K >=N 

( i.e. real-world  algebra problems. ). 
 

For arbitrary problems with more than four-equations in four-unknowns, it’s a waste of time to use 
pencil & paper to arrive at accurate numerical solutions, whereas computers can do the legwork in the 
blink of an eye… once the equations are inside the computer in a well-structured way. 
 

This tool is “a well-structured & automated way” 
of having  your computer solve 

K-equations  with L-outputs  in N-unknowns. 
 

This tool supports solving problems with many-more-than-three unknowns. Each unknown creates/adds 
another “dimension” to the “space” in which the problem will be understood and solved; hence having 
more than three unknowns …more than “a 3-D problem”… creates a “hyperspace” (i.e.:>3-D). These 
algorithms work in hyperspace as well as within the familiar territory of “Algebra 1 land”.  
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This tool is based on the subject: linear algebra; if you liked Algebra 1 and were good at it, you may be 
amazed by the empowerments that linear algebra provides… I’m still amazed, after 35 years of using 
linear algebra to solve complex applied mathematics problems.  
 

You’ve probably watched enough science fiction videos to believe that: hyperspace can be an extremely 
complicated place. Even within introductory linear algebra, there are theoretical results whose simple 3-
D examples defeat my intuition. HAT provides you with a carefully chosen, powerful, & relatively 
simple path through a complicated forest. So: mastering HAT will leave you far from being “an expert 
at linear algebra” – but you’ll be analytically empowered in some marvelous ways. 
 

“Matrix Inversion” is the key piece; here’s a look at a matrix inverter’s results for the example : 

 
 

The coefficients of the three equations  go into the matrix inverter, and three scaled perpendicular 
directions come out  as “answers”.  Perpendicular to what? … in each case, perpendicular to the 
coefficients of the other two equations. These scaled directions are entirely independent of what the 
outputs are equal to; far more powerfully – these three “perpendiculars” provide all the solutions for 
all the outputs that the three equations might be equal to. And matrix inversion works the same way 
in hyperspace… only human intuition is challenged. Perhaps you’re starting to grasp why it might “be 
hip to (be able to) find perp.” HAT does that, and more. 
 
The way you solved equations in Algebra 1 took you half way down the road to computing inverses. 
Here’s the output of a “BASIC” program that does the algebra; watch it go:  
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|---------- algebra ---------|- linear algebra -| 
Example1.Bas 2011.07.13 JMS 
           # of equations     # of unknowns     # of outputs 
              3             3             4 
Equations:  Reduce to Identity:      Output#1:  Append an identity matrix: 
   1.000000   0.200000   0.300000  :  1.100000   1.000000   0.000000   0.000000  
   0.300000   1.000000   0.100000  :  2.200000   0.000000   1.000000   0.000000  
   0.100000   0.200000   1.000000  : -0.500000   0.000000   0.000000   1.000000 
Row reductions “eliminate” one variable at a time (A, then B, then C):  
End of step 1: 
>  1.000000   0.200000   0.300000  :  1.100000   1.000000   0.000000   0.000000  
   0.000000   0.940000   0.010000  :  1.870000  -0.300000   1.000000   0.000000  
   0.000000   0.180000   0.970000  : -0.610000  -0.100000   0.000000   1.000000  
End of step 2: 
   1.000000   0.000000   0.297872  :  0.702128   1.063830  -0.212766   0.000000  
>  0.000000   1.000000   0.010638  :  1.989362  -0.319149   1.063830   0.000000  
   0.000000   0.000000   0.968085  : -0.968085  -0.042553  -0.191489   1.000000  
End of step 3: Identity matrix:     Answer#1: & Perp (The inverse) plops out: 
   1.000000   0.000000   0.000000 A=  1.000000   1.076923  -0.153846  -0.307692  
   0.000000   1.000000   0.000000 B=  2.000000  -0.318681   1.065934  -0.010989  
>  0.000000   0.000000   1.000000 C= -1.000000  -0.043956  -0.197802   1.032967  
Done.                                               ( visualized on page 2 ) 
 
So, by simply appending an “identity matrix” as extra “output” columns (read more about  the  “identity 
matrix” on the next page.), the algebraic solution process yields the full inverse matrix! Finding 
perps in hyperspace is quite straightforward… but the process is tedious, error prone, boring, & 
inefficient when done by hand (for all but simple problems). 
 
My first three students had difficulty understanding how to replicate the algebra solution above, and my 
guidance to them was unclear. Appendix A (pages 25-33) has the step-by-step introductory matrix 
solver details & the solver’s BASIC source code; see the details there. 
 
On the preceeding page I claimed that the inverse provides all the solutions. As an example: multiplying 
the inverse matrix times the Output#1 vector yields the Answer#1 vector. As follows: 
 
Names    Answer#1                                              The inverse                                            Output#1 
 A= | 1.000000 |      | 1.076923  -0.153846  -0.307692 |   | 1.100000 | 
 B= | 2.000000 |    = |-0.318681   1.065934  -0.010989 | * | 2.200000 | 
 C= |-1.000000 |      |-0.043956  -0.197802   1.032967 |   |-0.500000 | 
 
& here’s the same multiply using symbols instead of numbers: 
 
   Vector-out       =              Matrix#1          *   Vector#2 
|(j*a + m*b + p*c)|   |    j,        m,        p    |      | a | 
|(k*a + n*b + q*c)| = |    k,        n,        q    | *    | b | 
|(l*a + o*b + r*c)|   |    l,        o,        r    |      | c | 
 
You can easily check that the numeric & symbolic results agree. 
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“Identity matrices” (=”I” or [I]) generalize “1.0” into hyperspace. I’s always have exactly as many 
rows as columns, with 1.0’s along the diagonal and 0.0’s everywhere else. To understand more clearly, 
consider that, in simple algebra: 1.0*X = X , multiplying by 1.0 doesn’t change the value of a number. 
In the same way, multiplying by I doesn’t alter the hyperspace that you’re working in. I is a richer 
concept than “1.0”; not only are values preserved, but the inter-dimensional relationships are all 
preserved as well (up to the number of dimensions that I has). To aid your understanding, consider the 
matrix multiplication [Ai]*[A]:          [Ai] = the inverse of  [A] = [A]-1. 
 
      [I]        =               [Ai]            *       [A]    
|1.0   0.0   0.0|    |  1.076923 -0.153846 -0.307692|   | 1.00   0.20   0.30| 
|0.0   1.0   0.0|  = | -0.318681  1.065934 -0.010989| * | 0.30   1.00   0.10| 
|0.0   0.0   1.0|    | -0.043956 -0.197802  1.032967|   | 0.10   0.20   1.00| 
 
& the same multiply using symbols instead of numbers… 
 
                 Matrix-out                  =  Matrix#1  *  Matrix #2 
|(j*a+m*b+p*c),(j*d+m*e+p*f),(j*g+m*h+p*i)|    | j, m, p|   | a, d, g| 
|(k*a+n*b+q*c),(k*d+n*e+q*f),(k*g+n*h+q*i)|  = | k, n, q| * | b, e, h| 
|(l*a+o*b+r*c),(l*d+o*e+r*f),(l*g+o*h+r*i)|    | l, o, r|   | c, f, i| 
 
For any choice of output#’s or answer#’s, entire (hper)spaces are mapped back to themselves, in 
both directions , up to the number of dimensions that the square matrix I has. Division by [A]  is not 
defined; multiplying by [Ai] is as close as you can get, and has much of the same flavor. 
 

For this example problem ( but not always true): 
Output#1=     [A]*Answer#1      &     Answer#1=  [Ai]  *Output#1 
Answer#1=[Ai]*[A]*Answer#1      &     Output#1=[A]*[Ai]*Output#1 
Answer#1=   [I]  *Answer#1      &     Output#1=  [I]   *Output#1 
 
The vector/matrix#1 (on the left) must have exactly as many columns as the vector/matrix#2  (on the 
right) has rows; otherwise, the multiplication is undefined. The “answer” vector/matrix has the number 
of rows of  #1 and the number of columns of #2.  
Let:    Ntot  = number of  rows   of #1 
        NMtot = number of columns of #1 = number of  rows  of  #2 
        Mtot  =                           number of columns of #2 
The “Matrix & vector multiply” code can be written as: 
 
Dim MatVecOut( Ntot, Mtot) <-This BASIC program does matrix multiplies. 
Dim MatVec1(   Ntot,NMtot)        <- …and the values have been put in 
Dim MatVec2(  NMtot, Mtot)        <- …and the values have been put in 
For N=1 to Ntot 
  For M=1 to Mtot 
    MatVecOut(N,M)=0. 
    For NM=1 to NMtot                    #1       #2 
      MatVecOut(N,M)=MatVecOut(N,M)+MatVec1(N,NM)*MatVec2(NM,M) 
    Next NM 
  Next M 
Next N 
 
(If you’re looking for a computing environment to create your own hyperspace algebra tools , seek floating point numbers 
with a mimimum of 64-bits. (~ 12 significant digits). HAT uses 128-bit floats (~24 significant digits) which is called “quad 
precision” for a 32-bit operating system.) 
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A computationally minor (but brilliant & vastly empowering) step beyond what I’ve just shown you is 
the “matrix pseudoinverse” -  another nifty twist on this primrose path through the complicated 
forest of linear algebra which deals with having more equations than unknowns . Having more 
equations than unknowns is quite common in real- life problems, and provides beneficial opportunities, 
such as finding a “least-squares best fit” through many data points - which reduces the influence of 
measurement noise on the solution values of the unknowns. But with more equations than unknowns, 
[A] isn’t invertible by itself - because it’s not a square matrix.  
Enter the magic of the pseudoinverse. 
 
Appendix B (pages 34-47) has the source code for “MUse.bas/.exe,  a matrix PseudoInverter, 
OverWriter, & Linear Dependence eliminator.  The output if MUse.exe is in “MUseOut.txt”; see the 
appendix for more details. Systems with more or less equations than unknowns are referred to here as 
[B:Z]  inputs, which are morphed to [A:Y] prior to solving. Finding polynomial coefficients morphs 
[B:Z] to -> [C:Z]  to -> [A:Y].    [C] is often a non-square matrix. 
 
Calling the  non-square matrix of coefficients [B] instead of [A] , the pseudoinverse, denoted here 
by [B] -P  or [Bp] 

[B]-P= ( [B]T
* [B] )-1

* [B]T 

where [B]T = the transpose of [B]=[Bt],formed by interchanging the rows and columns of  [B].  
 
When I said a “computationally minor step”, I wasn’t kidding. 
Forming the transpose is trivial; letting [Bt] = the transpose of [B] = [B]T  , in BASIC: 
Dim B[ Ntot,Mtot)           <-This BASIC program creates the transpose. 
Dim Bt[Mtot,Ntot] 
For N=1 to Ntot 
     For M=1 to Mtot 
          Bt(M,N)=B(N,M) 
     Next M 
Next N 
 
The term “pseudoinverse” is somewhat confusing: the inversion is actually a regular inversion being 
done to the square matrix [B]T

*[B]. Hence the “pseudo-” part is the brilliant data compression technique 
associated with pre-forming [B]T

* [B] and then multiplying by [B]T after the inversion. Furthermore, 
if you just “want the answers” rather than “the space of all the possible answers”, the inverting of 
[B]T

*[B]  is not necessary! 
 
So, while it’s true that:      Unknown#1  ≅           [B]-P                   * Output#1  
    we’ll directly solve:                                  ( [B]T

* [B] )  :  [B]T 
* * Output#1] )  instead. 

 which solves just like:                                  [     A           :             Y                  ]   
  
After that we’ll look at the numerical values of [B]-P, which are interesting in their own right if you want 
to understand what the numbers inside these matrices represent. 
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Letting:  [A] = [B]T
* [B]  

    and:     Y  = [B]T
* Output#1  

 the system:                 [A]:Y                  row reduces to:        [I]  :~Answer#1      without inversion. 
This core [A] has the dimensions by the unknowns irrespective of  the number of equations. 
Likewise, the system: [A]:Y:[Bt]  row reduces  to:                [I] :~Answer#1: [B] -P 
 
Let’s go right to a numerical example – five equations in three unknowns. 
Adding two equations to the opening example (by exercising: 1.0*x+2.0*y-1.0*z=Output) 
                              
       A*     B*     C*      Output#1 (=Z) 
Eqn#1:   1.0    0.2    0.3  =  1.1  
Eqn#2:   0.3    1.0    0.1  =  2.2  
Eqn#3:   0.1    0.2    1.0  = -0.5  
Eqn#4:  -1.0    0.3    0.2  = -0.6  <- added 
Eqn#5:   0.5   -1.0   -0.3  = -1.2  <- added 
  
       [A] = [B]T

* [B]                           Y      = [B]T
* Z 

   2.35      -0.28       0.08     :    1.71 
  -0.28       2.17       0.72     :    3.34 
   0.08       0.72       1.23     :    0.29 
 
Simple algebra 1 row reductions solve for Answer#1.  
 
Row reductions: 
Step  1: 
   1.000000  -0.119149   0.034043 :    0.727660 
   0.000000   2.136638   0.729532 :    3.543745 
   0.000000   0.729532   1.227277 :    0.231787 
Step  2: 
   1.000000   0.000000   0.074725 :    0.925275 
   0.000000   1.000000   0.341439 :    1.658561 
   0.000000   0.000000   0.978186 :   -0.978186 
Step  3:         [I]                   Answer#1 
   1.000000   0.000000   0.000000 :    1.000000 = A 
   0.000000   1.000000   0.000000 :    2.000000 = B 
   0.000000   0.000000   1.000000 :   -1.000000 = C 
Done. 
 
Inversion isn’t necessary in order to solve more equations than unknowns! Of course, we’re not finding 
all the possible answers, only the  particular Answer#1. 
 
Where did Answer#1 come from? Understanding what the numbers in these matrices stand for may help 
your intuitive grasp. When you study physics, you’ll learn about the units of numbers and variables, 
which is the same idea.. For example, if you have an amount of money equal to 2, you don’t know how 
much money that is until it has a unit associated with it, for example 2 dollars , or perhaps 2 cents. 
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The units of the numbers inside the matrices are rates of change. Consider the equation of a straight line 
on a 2-D graph, often written:    Y=m*X+b    where m is the slope of the line and b is the Y- intercept 
of the line with the graph’s Y-axis.  
 
                          m  is the rate of change of Y with respect to changes in the value of X. 
 
In calculus, rates of change of outputs with respect to a single input are called “derivatives”; derivatives 
are the local slopes; they’re “local” because, when lines are curved, the slopes change as the input value 
moves along the curved line.  
 
The two example problems have three “inputs”: A, B, & C, which I’ve referred to as “unknowns”. The 
numbers  which multiply A, B, & C are slopes of each output with respect to A, B, & C. Since there is 
more than one input, there’s more than one dimension in which to have a slope, in fact there are three 
slopes associated with each equation. Calculus calls these slopes “partial derivatives” because slopes 
vary as the direction of measurement of slope varies. Hence: 
 

The numbers inside [A] are numerical partial derivatives. 
 

In algebra 1 as well, the equation coefficients are “numerical partial derivatives”. 
 

                                                                    ------------ 
Changes of notation will simplify and compact all that follows : 
In the spirit of:   Y=m*X+b,   
                            Single column case:                                           Multiple column case: 
      1. Unknowns will henceforth be an X vector      &       unknowns will be an [X] matrix 
      2.   Outputs   will henceforth be  a   Y vector      &,        outputs   will be  a  [Y] matrix. 
 
So:    X    = Unknowns = Answer#1  ,and:  Y   = Outputs = Output#1 
       X(1) = A        =  1.0             Y(1)          =  1.1 
       X(2) = B        =  2.0             Y(2)          =  2.2 
       X(3) = C        = -1.0             Y(3)          = -0.5 
 
And the elements of [A] are identified by their location in the 
matrix:       [A]= | A(1,1)   A(2,1)  A(3,1) |  A(n,m) where 
                   | A(1,2)   A(2,2)  A(3,2) |    n   =[1,2,or 3] 
                   | A(1,3)   A(2,3)  A(3,3) |      m =[1,2,or 3] 
 
After the changes of notation we can write: Y=[A]*X 
 
[A]= | 1.000000   0.200000   0.300000 |   &  Output#1 = [A} * Unknown#1 
     | 0.300000   1.000000   0.100000 |  now written  Y = [A] *    X 
     | 0.100000   0.200000   1.000000 | 
 
                                                                    ------------ 
 

The units of each matrix number are the units that go out to the left divided by the units that come in 
from the right (~ from above)  during a matrix multiply. .. which “has to be” because each number is a 
slope in a particular direction. Assigning units to our first example is enlightening: 
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The units of Y and X are usually suggested by the problem itself. Using the fanciful units: 
 
  Y(1)=”widgets”      X(1)=“person”    “/” = the division symbol 
  Y(2)=”mistakes”     X(2)=”hour”          = “per” 
  Y(3)=”triumphs”     X(3)=”dollar”         …creates derivatives 
   Y   =            [A]  *  X 
 
Then the units of the partial derivatives within [A] become: 
[A]= | ( widgets/person) ( widgets/hour) ( widgets/dollar) | 
     | (mistakes/person) (mistakes/hour) (mistakes/dollar) | 
     | (triumphs/person) (triumphs/hour) (triumphs/dollar) | 
 
The units must remain consistent during mathematical operations; consider multiplies: 
 
Y(1) widgets =   A(1,1) widgets/person * X(1) person 
               + A(1,2) widgets/hour   * X(2) hour 
               + A(1,3) widgets/dollar * X(3) dollar 
 
Both inverse and pseudoinverse matrices have units that are reciprocal and transposed with respect to 
the original matrix. That way the resulting units also make sense within multiplies. Units are consistent 
in linear algebra equations. Units offer an independent way to check equations for correctness.  
 
The idea of “units” can be abstracted to the unspecified units of the symbols of the variables. So 
the units of  A(i,j) =  the units of Y(i) / the units of X(j) and  
the units of  B(i,j) =  the units of Z(i) / the units of X(j). 
 

------ a digression ------ 
There’s  a more compact way to compute and display matrix inversions. For the first example, draw X’s 
through the (unnecessary) columns that have no unexpected information: 

 



Hyperspace Algebra Tools   version 0.50                  Page 9 of 54                            September 14th, 2011 

Hence a matrix can overwrite itself in the course of being inverted; so input:                                         
[A]:                               &  Y: 
   1.000000   0.200000   0.300000  :  1.100000  
   0.300000   1.000000   0.100000  :  2.200000 
   0.100000   0.200000   1.000000  : -0.500000 
Goes directly to output:                   
[A]-1                               &  X: 
   1.076923  -0.153846  -0.307692  :  1.000000  
  -0.318681   1.065934  -0.010989  :  2.000000   
  -0.043956  -0.197802   1.032967  : -1.000000 
HAT’s inverter/solver is an overwriter.           Appendix B has BASIC OverWriter source code. 

------------ 
 
Let’s compute the full pseudoinverse [B]-P of the five-equation example problem using: 
                [B]-P=([B]T*[B])-1*[B]T 
 

We already have:                      Transposing [B] and treating it is a [Y] matrix: 
[A]=[B]T*[B]=      & [Y]=[B]T=     
 

 | 2.35 -0.28  0.08|:| 1.00   0.30   0.10  -1.00   0.50 | 
 |-0.28  2.17  0.72|:| 0.20   1.00   0.20   0.30  -1.00 | 
 | 0.08  0.72  1.23|:| 0.30   0.10   1.00   0.20  -0.30 | 
 
You can use the algorithm that solves the first example problem to find this pseudoinverse; here I’m 
using the OverWriter because the notation is more compact: 
 
 [Ai]= ( [B]T

* [B] )-1 =   & [X]=[B]-P = The full pseudoinverse = 
 
| 0.438  0.082 -0.076| : |0.431337   0.205574  -0.016233  -0.428608   0.160012| 
| 0.082  0.587 -0.349| : |0.094573   0.576854  -0.223428   0.024503  -0.441566| 
|-0.076 -0.349  1.022| : |0.160488  -0.269741   0.944851   0.176135   0.004168| 
 
Does X            ≅        [B]-P                                                                                                                                        *        Z?    Yes. 
        
| 1.000000|   | 0.431337  0.205574 -0.016233 -0.428608  0.160012|   | 1.10| 
| 2.000000| = | 0.094573  0.576854 -0.223428  0.024503 -0.441566| * | 2.20| 
|-1.000000|   | 0.160488 -0.269741  0.944851  0.176135  0.004168|   |-0.50| 
                                                                    |-0.60| 
                                                                    |-1.20| 
And the units of  B-P(n,k) are:   units of X(n)  /units of Z(k)  
 
Does[I]  =                 [B]-P                       *      [B]?    Yes. 
 
| 1.0  0.0  0.0|  | 0.431337  0.205574 -0.016233 -0.428608  0.160012|  | 1.00   0.20   0.30| 
| 0.0  1.0  0.0|= | 0.094573  0.576854 -0.223428  0.024503 -0.441566| *| 0.30   1.00   0.10| 
| 0.0  0.0  1.0|  | 0.160488 -0.269741  0.944851  0.176135  0.004168|  | 0.10   0.20   1.00| 
                                                                       |-1.00   0.30   0.20| 
                                                                       | 0.50  -1.00  -0.30| 
 In this problem:   X =[B]-P*[B]*X=I*X  
 And the units of  I(n,m)  are: ~( units of X(n) / units of Z(k) ) *(units of Z(k) / units of X(n) ) *  
                                                   (…for each  k=1 to nEquations…) 
 which exactly cancel, showing that  [I] is unitless.    
And in this example problem:   Z =[B]*[B]-P *Z, however:  I≠[B]*[B]-P 
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 [B]*[B]-P= 
| 0.498398    0.240022    0.222537   -0.370867    0.072949| 
| 0.240022    0.611552   -0.133812   -0.086466   -0.393145| 
| 0.222537   -0.133812    0.898542    0.138175   -0.068144| 
|-0.370867   -0.086466    0.138175    0.471186   -0.291648| 
| 0.072949   -0.393145   -0.068144   -0.291648    0.520321| 
 
Here, Z is in a five-dimensional space, but two dimensions of information are lost in the multiply  [B]T

* 
[B], and that information cannot be recovered by subsequent multiplies back into a higher dimensional 
space.  Z ≅[B]*[B]-P *Z is a least squares best fit of Z onto the 3-D  subspace of  preserved 
information. The example was chosen with Z already within the 3-D subspace. In the “real world”, the Z 
values are often experimental measurements which have at- least tiny errors , often called “noise”, 
associated with them. Introducing some reality, let  Z(5)=-1.19  instead of  = -1.20,  and see what 
happens. In subtle ways, the inputs and outputs are jostled: 
 
Now  X=          whereas before X= 
    | 1.001600|                | 1.00|     
    | 1.995584|                | 2.00| 
    |-0.999958|                |-1.00| 
 
    Z    ≅   [B]*[B]-P                                        *   Z  
| 1.100729|   | 0.498398    0.240022    0.222537   -0.370867    0.072949|   | 1.10| 
| 2.196069|   | 0.240022    0.611552   -0.133812   -0.086466   -0.393145|   | 2.20| 
|-0.500681| ≅ | 0.222537   -0.133812    0.898542    0.138175   -0.068144| * |-0.50| 
|-0.602916|   |-0.370867   -0.086466    0.138175    0.471186   -0.291648|   |-0.60| 
|-1.194797|   | 0.072949   -0.393145   -0.068144   -0.291648    0.520321|   |-1.20| 
 
[A]-P has remained unchanged, because the coefficients of the equations, not the particular inputs or 
outputs, define [A]-P.  

------------ 
Appendix P, Entry #1, page 49, suggests a useful social purpose which hyperspace mathematics will eventually serve. 

------------ 
So far, the example problems have had X as the first power of A, B, & C individually. Higher-order 
polynomials offer a much-more-fruitful generic approach to finding equations to explain arbitrary  
data. HAT least-squares-best-fit’s polynomial coefficients to your data. The understanding that the 
matrix elements are numerical partial derivatives is the key to how polynomial fitting works. If you 
want to determine 12 polynomial coefficients (=unknowns), you’ll need to have a minimum of 12 data-
points (=equations) to work with. 
  Often, sensors are calibrated using polynomial fits; people want to know, in advance, how accurate the 
output of a sensor will be when the sensor outputs emerge from the polynomial that adjusts the raw 
sensor signals. Having five times more data-points than the expected number of polynomial 
coefficients provides a comfortable margin for finding the actual “best fit”. The reason for having more 
data-points than coefficients is that the solution will be an exact fit of the data when #Data-
points=#Coefficients – there is no error - but the resulting polynomial may be a very inaccurate 
answer on either side of the datapoints. Having the coefficients best- fit the larger dataset smoothes out 
the solution, and also provides a prediction how good the fit is likely to be for another arbitrary real 
sensor output. Doing polynomial fits on real data without surplus data &  error assessments is a formula 
for disaster! The extra data also aids in finding and eliminating the occasional bad data-point, which also 
helps yield more accurate calibrations. 
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As an example of how multivariable polynomials are set-up, let’s exercise the examples’ underlying 
equation 22 more times to generate a total of “27 datapoints” and then solve for the polynomial 
coefficients which I’ll specify; you’ll see that the “numerical partial derivatives” of a multivariable 
polynomial... have “almost-obvious” values once understood. 
 
Exercising equation: A *X(1)+ B *X(2)+ C *X(3) = Z 
                    1.0*X(1)+2.0*X(2)-1.0*X(3) = Z 
to synthesize more “datapoints”: 
  #     X(1)   X(2)   X(3):  Z  
  1    1.0    0.2    0.3    1.1   <same as before 
  2    0.3    1.0    0.1    2.2   <      “ 
  3    0.1    0.2    1.0   -0.5   <      “ 
  4   -1.0    0.3    0.2   -0.6   <      “ 
  5    0.5   -1.0   -0.3   -1.2   <      “        (without the added noise) 
  6   -1.00   0.00   2.00  -3.00  <adding 22 more “datapoints” (#6-#27) 
  7   -1.00   0.50  -2.00   2.00 
  8   -1.00   0.50   0.00   0.00 
  9   -1.00   0.50   2.00  -2.00 
 10    0.00  -0.50  -2.00   1.00 
 11    0.00  -0.50   0.00  -1.00 
 12    0.00  -0.50   2.00  -3.00 
 13    0.00   0.00  -2.00   2.00 
 14    0.00   0.00   0.00   0.00 
 15    0.00   0.00   2.00  -2.00 
 16    0.00   0.50  -2.00   3.00 
 17    0.00   0.50   0.00   1.00 
 18    0.00   0.50   2.00  -1.00 
 19    1.00  -0.50  -2.00   2.00 
 20    1.00  -0.50   0.00   0.00 
 21    1.00  -0.50   2.00  -2.00 
 22    1.00   0.00  -2.00   3.00 
 23    1.00   0.00   0.00   1.00 
 24    1.00   0.00   2.00  -1.00 
 25    1.00   0.50  -2.00   4.00 
 26    1.00   0.50   0.00   2.00 
 27    1.00   0.50   2.00   0.00 
 
The “Order” of a polynomial variable is the highest power of that variable in any 
particular equation. The coefficient count is one larger than the order, because each 
variable has a 0th power term as well. Here’s a multivariable polynomial that’s 2nd order 
in X(1) and 1st order in X(2) and X(3), so there’ll be 12 coefficients – 3x2x2. Using 
[C:Z] as the notation: 



Hyperspace Algebra Tools   version 0.50                  Page 12 of 54                            September 14th, 2011 

[C:Z]= 
# X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3:  Z 
   ^0^0^0 ^1^0^0 ^2^0^0 ^0^1^0 ^1^1^0 ^2^1^0 ^0^0^1 ^1^0^1 ^2^0^1 ^0^1^1 ^1^1^1 ^2^1^1 
 1  1.     1.     1.     0.2    0.2    0.2    0.3    0.3    0.3    0.06   0.06   0.06   1.1 
 2  1.     0.3    0.09   1.     0.3    0.09   0.1    0.03   0.  9  0.1    0.03   0.009  2.2 
 3  1.     0.1    0.01   0.2    0.02   0.  2  1.     0.1    0.01   0.2    0.02   0.002 -0.5 
 4  1.    -1.     1.     0.3   -0.3    0.3    0.2   -0.2    0.2    0.06  -0.06   0.06  -0.6 
 5  1.     0.5    0.25  -1.    -0.5   -0.25  -0.3   -0.15  -0.075  0.3    0.15   0.075 -1.2 
 6  1.    -1.     1.     0.     0.     0.     2.    -2.     2.     0.     0.     0.    -3.0 
 7  1.    -1.     1.     0.5   -0.5    0.5   -2.     2.    -2.    -1.     1.    -1.     2.0 
 8  1.    -1.     1.     0.5   -0.5    0.5    0.     0.     0.     0.     0.     0.     0.0 
 9  1.    -1.     1.     0.5   -0.5    0.5    2.    -2.     2.     1.    -1.     1.    -2.0 
10  1.     0.     0.    -0.5    0.     0.    -2.     0.     0.     1.     0.     0.     1.0 
11  1.     0.     0.    -0.5    0.     0.     0.     0.     0.     0.     0.     0.    -1.0 
12  1.     0.     0.    -0.5    0.     0.     2.     0.     0.    -1.     0.     0.    -3.0 
13  1.     0.     0.     0.     0.     0.    -2.     0.     0.     0.     0.     0.     2.0 
14  1.     0.     0.     0.     0.     0.     0.     0.     0.     0.     0.     0.     0.0 
15  1.     0.     0.     0.     0.     0.     2.     0.     0.     0.     0.     0.    -2.0 
16  1.     0.     0.     0.5    0.     0.    -2.     0.     0.    -1.     0.     0.     3.0 
17  1.     0.     0.     0.5    0.     0.     0.     0.     0.     0.     0.     0.     1.0 
18  1.     0.     0.     0.5    0.     0.     2.     0.     0.     1.     0.     0.    -1.0 
19  1.     1.     1.    -0.5   -0.5   -0.5   -2.    -2.    -2.     1.     1.     1.     2.0 
20  1.     1.     1.    -0.5   -0.5   -0.5    0.     0.     0.     0.     0.     0.     0.0 
21  1.     1.     1.    -0.5   -0.5   -0.5    2.     2.     2.    -1.    -1.    -1.    -2.0 
22  1.     1.     1.     0.     0.     0.    -2.    -2.    -2.     0.     0.     0.     3.0 
23  1.     1.     1.     0.     0.     0.     0.     0.     0.     0.     0.     0.     1.0 
24  1.     1.     1.     0.     0.     0.     2.     2.     2.     0.     0.     0.    -1.0 
25  1.     1.     1.     0.5    0.5    0.5   -2.    -2.    -2.    -1.    -1.    -1.     4.0 
26  1.     1.     1.     0.5    0.5    0.5    0.     0.     0.     0.     0.     0.     2.0 
27  1.     1.     1.     0.5    0.5    0.5    2.     2.     2.     1.     1.     1.     0.0 
          X(1)^1        X(2)^1               X(3)^1                                      Z 
     These are exactly the same as the input data columns. 
 
The symbol  “̂ ” is used in Basic to indicate “to the power of” i.e. exponentiation; so: 
                                                   X(1)^2  = X(1)* X(1) =  X(1)2 
 

The other columns are likewise products of the powers of X(1)*X(2)*X(3) evaluated at each 
datapoint. Consider the underlined entry for datapoint #3: 
          X(1)^2 * X(2)^1 * X(3)^1 = 0.1^2 * 0.2^1 * 1.0^1 
                                   =  .01  *  .2   * 1.0 
                                   =  .002 
& [C:Z] solves just like [B:Z] ,  (i.e: [A:Y]=[ [Ct] * [C] : [Ct] * Z ] yielding twelve values: 
 

The solved polynomial coefficients are: 
             PolyCoeff:       Powers: 
                X1^  X2^  X3^ 
    1      0.0    0    0    0 
    2      1.0    1    0    0     =  1.0*X(1)^1 
    3      0.0    2    0    0 
    4      2.0    0    1    0     =  2.0*X(2)^1 
    5      0.0    1    1    0 
    6      0.0    2    1    0 
    7     -1.0    0    0    1     = -1.0*X(3)^1 
    8      0.0    1    0    1 
    9      0.0    2    0    1           The other coefficients are 0’s. 
   10      0.0    0    1    1 
   11      0.0    1    1    1 
   12      0.0    2    1    1     =  0.0 * X(1)^2 * X(2)^1 * X(3)^1 
                  ^    ^    ^  …the powers of each coefficient are added for clarity.
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Putting the previous noise back in:  Z(5) = - 1.19  & re-solving tweaks all the coefficients. 
 
The polynomial coefficients become: 
           PolyCoeff:             Powers: 
                    X1^  X2^  X3^ 
    1      0.000418   0    0    0 
    2      1.005937   1    0    0 
    3     -0.006181   2    0    0 
    4      1.999261   0    1    0 
    5     -0.012926   1    1    0 
    6      0.013015   2    1    0 
    7     -1.000043   0    0    1 
    8     -0.003022   1    0    1 
    9      0.003048   2    0    1 
   10      0.000214   0    1    1 
   11      0.006061   1    1    1 
   12     -0.006171   2    1    1 
 
Prior to putting noise in the data, there was no error in this synthesized example. Now we can look at 
the errors by exercising the resulting polynomial whose coefficients were just computed: 
 
Exercising the polynomial:        The errors: 
    #      Z:data        Z:poly     Z:poly-Z:data 
    1      1.100000      1.100045      0.000045 
    2      2.200000      2.198277     -0.001723 
    3     -0.500000     -0.499593      0.000407 
    4     -0.600000     -0.603655     -0.003655  <- max. error 
  Y(5)    -1.190000     -1.193462     -0.003462 
    6     -3.000000     -2.999645      0.000355 
    7      2.000000      2.000864      0.000864 
    8      0.000000      0.000901      0.000901 
    9     -2.000000     -1.999061      0.000939 
   10      1.000000      1.001087      0.001087 
   11     -1.000000     -0.999212      0.000788 
   12     -3.000000     -2.999512      0.000488 
   13      2.000000      2.000503      0.000503 
   14      0.000000      0.000418      0.000418 
   15     -2.000000     -1.999667      0.000333 
   16      3.000000      2.999920     -0.000080 
   17      1.000000      1.000048      0.000048 
   18     -1.000000     -0.999823      0.000177 
   19      2.000000      2.000636      0.000636 
   20      0.000000      0.000499      0.000499 
   21     -2.000000     -1.999637      0.000363 
   22      3.000000      3.000207      0.000207 
   23      1.000000      1.000174      0.000174 
   24     -1.000000     -0.999859      0.000141 
   25      4.000000      3.999777     -0.000223 
   26      2.000000      1.999849     -0.000151 
   27      0.000000     -0.000080     -0.000080 
 

Appendix C page 48:  Hat.exe – presently computes (only) polynomial-based solutions.
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Here’s how the input data for the example above looks inside a spreadsheet: 
 

 
 
Export this file in a “comma separated value” (.csv) format as “HatIn.csv” for use by HAT. 
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The result is awkward to read: 
~,2011.07.27,Jeff Setterholm, Description|Date|Analyst 
27,5,1,4, nDatRows|nCols|nColIndex|MaxOrder 
       ,1,2,3,-1, >0=In`s|<0=Out`s|0=ignore 
       ,2,1,1,        , In`s: polynomial order 
 index ,    X(1),    X(2),    X(3),       Z,   Column labels 
1,1,0.2,0.3,1.1,  <same as before 
2,0.3,1,0.1,2.2,"  <      """ 
3,0.1,0.2,1,-0.5,"  <      """ 
4,-1,0.3,0.2,-0.6,"  <      """ 
5,0.5,-1,-0.3,-1.19," <      "" (noise included)" 
6,-1,0,2,-3, <additional datapoints #6-#27 
7,-1,0.5,-2,2, 
8,-1,0.5,0,0, 
9,-1,0.5,2,-2, 
10,0,-0.5,-2,1, 
11,0,-0.5,0,-1, 
12,0,-0.5,2,-3 
13,0,0,-2,2 
14,0,0,0,0 
15,0,0,2,-2 
16,0,0.5,-2,3 
17,0,0.5,0,1 
18,0,0.5,2,-1 
19,1,-0.5,-2,2 
20,1,-0.5,0,0 
21,1,-0.5,2,-2 
22,1,0,-2,3 
23,1,0,0,1 
24,1,0,2,-1 
25,1,0.5,-2,4 
26,1,0.5,0,2 
27,1,0.5,2,0 
!////////////////////////////// End of Testcase ////////////////////////////7/9 
The data above was synthesized by exercising: 
       1.0*X(1)+2.0*X(2)-1.0*X(3)  =  Y 
HAT can be used without using a spreadsheet to generate the “HatIn.csv” file. For example: 
HatIn.csv,2011.07.27,Jeff Setterholm, Description|Date|Analyst 
     27,       5,       1,       4, nDatRows|nCols|nColIndex|MaxOrder 
       ,      1 ,      2 ,      3 ,     -1 , >0=In`s|<0=Out`s|0=ignore 
       ,      2 ,      1 ,      1 ,        , In`s: polynomial order 
 index ,    X(1),    X(2),    X(3),       Z,   Column labels 
      1,     1.0,     0.2,     0.3,     1.1,  <same as before 
      2,     0.3,     1.0,     0.1,     2.2,  <      " 
      3,     0.1,     0.2,     1.0,    -0.5,  <      " 
      4,    -1.0,     0.3,     0.2,    -0.6,  <      " 
      5,     0.5,    -1.0,    -0.3,    -1.19, <      " (noise included) 
      6,    -1.00,    0.00,    2.00,   -3.00, <additional datapoints #6-#27 
      7,    -1.00,    0.50,   -2.00,    2.00, 
      8,    -1.00,    0.50,    0.00,    0.00, 
      9,    -1.00,    0.50,    2.00,   -2.00, 
     10,     0.00,   -0.50,   -2.00,    1.00, 
     11,     0.00,   -0.50,    0.00,   -1.00, 
     12,     0.00,   -0.50,    2.00,   -3.00, 
     13,     0.00,    0.00,   -2.00,    2.00, 
     14,     0.00,    0.00,    0.00,    0.00, 
     15,     0.00,    0.00,    2.00,   -2.00, 
     16,     0.00,    0.50,   -2.00,    3.00, 
     17,     0.00,    0.50,    0.00,    1.00, 
     18,     0.00,    0.50,    2.00,   -1.00, 
     19,     1.00,   -0.50,   -2.00,    2.00, 
     20,     1.00,   -0.50,    0.00,    0.00, 
     21,     1.00,   -0.50,    2.00,   -2.00, 
     22,     1.00,    0.00,   -2.00,    3.00, 
     23,     1.00,    0.00,    0.00,    1.00, 
     24,     1.00,    0.00,    2.00,   -1.00, 
     25,     1.00,    0.50,   -2.00,    4.00, 
     26,     1.00,    0.50,    0.00,    2.00, 
     27,     1.00,    0.50,    2.00,    0.00, 
!////////////////////////////// End of Testcase ////////////////////////////7/9 
The data above was synthesized by exercising: 
       1.0*X(1)+2.0*X(2)-1.0*X(3)  =  Z 
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Hat exports “HatOut.csv” with column formatting resembling the column formatting of the input data. 
So taking the time to align the columns of your “HatIn.csv” may improve your subsequent 
documentation and communication of the results achieved using HAT. 
 
Comments about the setup of “HatIn.csv”:                  each field must be = 34 characters wide. 
Line -4: 
HatIn.csv,  2011.07.27,Jeff Setterholm,    Three commas must follow the three fields. 
Description|    Date  |     Analyst                 Remarks are optional. 
Line -3: 
     27,       5,       1,       4 ,       Four commas must follow the four fields. 
   nDatRows|  nCols |nColIndex|MaxOrder             Remarks are optional. 
                                     “MaxOrder” is the highest combined power 
                                                                                           In version 0.40 this value must be >0, or the program stops. 
                              Set nColIndex = 0 if you have no index column. 
Line -2: 
       ,      1 ,      2 ,      3 ,    -1 , >0=In`s|<0=Out`s|0=ignore 
                                                                                     nCols  commas must follow the first  nCols  fields. 
                                                    Remarks are optional. 
 The columns are reordered, per your assignments above, in “HatOut.csv”, 
 which can then be renamed “HatIn.csv for subsequent editing & use as input. 
Line -1: 
       ,      2 ,      1 ,      1 ,       , In`s: polynomial order 
                                                                                     nCols  commas must follow the first  nCols  fields. 
                                                    Remarks are optional. 
       ,        ,        ,        ,       , In`s: polynomial order   is valid 
Line  0: 
 index ,    X(1),    X(2),    X(3),      Z,   Column labels 
                                                                                     nCols  commas must follow the first  nCols  fields. 
                                                    Remarks are optional. 
If you don’t provide an” Index” column for your data – HAT will add the column to “HatOut.csv”. 
                                         The index is used in accuracy/error reporting. 
Line  1: etc 
      1,     1.0,     0.2,     0.3,    1.1,  <same as before 
                                                                                     nCols  commas must follow the first  nCols  fields. Indices don’t need to 
sequential or ordered   .                 Remarks are optional. 
… 
Line  27:                                                                              HAT expects to read  nDatRows of data. 
     27,     1.00,    0.50,    2.00,  0.00, 
 

As an example, changing lines -4 to 0  of the example on the previous page to: 
HatIn.csv,2011.07.27,Jeff Setterholm, Description|Date|Analyst 
     5,       5,       1,       1, nDatRows|nCols|nColIndex|MaxOrder 
      ,      3 ,      2 ,      1 ,     -1 , >0=In`s|<0=Out`s|0=ignore 
      ,      1 ,      1 ,      1 ,        , In`s: polynomial order 
index ,    X(1),    X(2),    X(3),       Y,   Column labels 
 

Produces “HatOut.csv”: 
HatOut.csv,2011.07.27,Jeff Setterholm, Description|Date|Analyst 
      5,       5,       1,       1, nDatRows|nCols|nColIndex|MaxOrd 
       ,      1 ,      2 ,      3 ,     -1 , >0=In`s|<0=Out`s|0=ignore 
       ,      1 ,      1 ,      1 ,        , In`s: polynomial order 
 Index ,    X(3),    X(2),    X(1),       Z,   Column labels  <- Columns are reordered. 
      1,     0.3,     0.2,     1.0,     1.1,  <same as before 
      2,     0.1,     1.0,     0.3,     2.2,  <      " 
      3,     1.0,     0.2,     0.1,    -0.5,  <      " 
      4,     0.2,     0.3,    -1.0,    -0.6,  <      "        <- Data is truncated. 
      5,    -0.3,    -1.0,     0.5,    -1.19, <      " (noise included) 
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The polynomial coefficients are: 
       Output#  1,   Powers: 
    1,  0.347122655325D-02,   0,   0,   0,   <- the added 0th order term. 
    2, -0.100348474693D+01,   1,   0,   0,   <- coefficient of X(3)^1 
    3,  0.199547695393D+01,   0,   1,   0,   <- coefficient of X(2)^1 
    4,  0.100037796722D+01,   0,   0,   1,   !- coefficient of X(1)^1 
 
Data Scaling 
Even using 64-bit precision real numbers with ~ 24 significant digits, input data that naturally arises in 
professional use of HAT (to do polynomial fits) will occasionally produce intermediate computations 
concurrently both so large and so small that information is lost due to round off error in combining the 
very large and very small numbers. 
 
Earlier, the equation of a straight line:  Y=m*X+b  was mentioned wherein m  is the slope and b is the 
Y-intercept. Hat scales polynomial data by using m’s and b’s to adjust data values for better 
computational advantage and also for better understanding. The names of m and b are changed to the 
way that engineers talk - to Gain (=m) and Bias (=b),  Gain and Bias – “GB” is my abbrev. -  operate 
on data columns; Gain multiplies the columns data entries (e.g.: vertically expands the data when 
plotted on a 2-D graph) and Bias shifts the column entries (e.g. vertically moves the data up or down on 
a graph without otherwise morphing the data). 
 
Data Scaling – Pass 1 – Uniform Bounding - GB1 
GB’ing every data column of  “HatIn.csv” to exactly fit the interval [ -1.0, 1.0 ] yields the fact that, no 
matter how high the order of a polynomial becomes, the numerical partial derivatives will reach but-not-
exceed plus-or-minus 1.0. Hence the 24 significant digits will be used to better effect by operating on 
numbers “that are in the same ballpark”. So we seek the GB values for: 
                ColumnOut = Gain*ColumnIn + Bias 
Sort through ColumnIn to find the smallest and largest values: ColumnInMin and ColumnInMax. 
We want ColumnOutMin = -1.0 and ColumnOutMax = +1.0.  So: 
   
Gain = (ColumnOutMax - ColumnOutMin) / (ColumnInMax – ColumnInMin) 
     =              2.0              / (ColumnInMax – ColumnInMin) 
 

When (ColumnInMax–ColumnInMin)=0. (a constant column), set Gain = 1.0 
 
Bias =  ColumnOutMax - Gain * ColumnInMax 
     =       1.0     - Gain * ColumnInMax 
 

When (ColumnInMax–ColumnInMin)=0. this Bias value produces 
ColumnOut=1.0, which seems to have benign downstream effects. 

 
GB’ing  into the interval [ -1.0, 1.0 ] often yields polynomial coefficients that are also in the same 
range; so when polynomial coefficients are significantly outside the range, the coefficients may be 
competing with each other to force an un-natural fit. (I’m not sure… but watch for large GB1-scaled 
polynomial coefficients and form your own opinion(s) about what’s happening.) 
 
Un-scaling, or de-scaling the resulting coefficients to their requested values isn’t easy to do, but HAT 
provides. Use of the binomial theorem and Pascal’s triangle in a multi-variable, arbitrary-order 
polynomial environment accomplishes the task, here referred to as “de-GB’ing’. If you decide to tackle 
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the algorithms, you may find that G’ing  & de-G’ing are fairly easy to do, whereas de-B’ing  is rather 
complicated. I surmise that Bias shifts alter (~screw up) the inter-column geometry in hyperspace, 
whereas a Gain change primarily affects the data column involved. 
 
Pass 1 scaling – GB1 – for the data on page 15 yields: 
Scaling the input columns into [-1.0,+1.0] 
using G1 and B1... as in Y=G1*X+B1: 
index     X(1)        X(2)        X(3)   :    Z 
G1:     1.0000      1.0000      0.5000      0.2857 
B1:     0.0000      0.0000      0.0000     -0.1429 
       ---------   ---------   ---------   --------- 
   1    1.000000    0.200000    0.150000    0.171429 
   2    0.300000    1.000000    0.050000    0.485714 
   3    0.100000    0.200000    0.500000   -0.285714 
   4   -1.000000    0.300000    0.100000   -0.314286 
   5    0.500000   -1.000000   -0.150000   -0.482857 
   6   -1.000000    0.000000    1.000000   -1.000000 
   7   -1.000000    0.500000   -1.000000    0.428571 
   8   -1.000000    0.500000    0.000000   -0.142857 
   9   -1.000000    0.500000    1.000000   -0.714286 
  10    0.000000   -0.500000   -1.000000    0.142857 
  11    0.000000   -0.500000    0.000000   -0.428571 
  12    0.000000   -0.500000    1.000000   -1.000000 
  13    0.000000    0.000000   -1.000000    0.428571 
  14    0.000000    0.000000    0.000000   -0.142857 
  15    0.000000    0.000000    1.000000   -0.714286 
  16    0.000000    0.500000   -1.000000    0.714286 
  17    0.000000    0.500000    0.000000    0.142857 
  18    0.000000    0.500000    1.000000   -0.428571 
  19    1.000000   -0.500000   -1.000000    0.428571 
  20    1.000000   -0.500000    0.000000   -0.142857 
  21    1.000000   -0.500000    1.000000   -0.714286 
  22    1.000000    0.000000   -1.000000    0.714286 
  23    1.000000    0.000000    0.000000    0.142857 
  24    1.000000    0.000000    1.000000   -0.428571 
  25    1.000000    0.500000   -1.000000    1.000000 
  26    1.000000    0.500000    0.000000    0.428571 
  27    1.000000    0.500000    1.000000   -0.142857 
 
With no further scaling, after [B] is expanded to 13 columns to accommodate the 12 polynomial 
coefficients, the upper left corner of  [A]   =[Ct]*[C]  becomes: 
  27.000000   5.900000  15.350000   2.200000  … 
   5.900000  15.350000   5.153000  -1.780000  … 
  15.350000   5.153000  15.070700   1.842000  … 
   2.200000  -1.780000   1.842000   5.920000  …  
    …          …          …          …  
Further insight can be gained by going through a second round of pure-gain adjustment, as you’ll see 
shortly… 
 

Intuition in hyperspace: 
Two aspects of hyperspace seem intuitive to me: 
 

1. A number called “the determinant” of a matrix is the (signed: ±) hypervolume   
    enclosed  by the vectors.   (The outputs columns, if any, aren’t part of the determinant).  
    This is just like “area” in 2-D and/or “volume” in 3-D. (The “shapes” are parallelepipeds.) 

–and- 
2. The “vector dot product” between any two columns of the matrix. When each column has a total 
length of 1.0, the dot product is the cosine of the angle between the vectors. Hence the angle between 
vectors can be computed in N-dimensional space and means the same thing as in 2-D or 3-D.                                                          
Details about determinant s & dot products follow. 
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1.) It’s difficult to clearly communicate the closed-form mathematical expression for the value of the 
determinant, but the value “falls out” of the solution processes that we’ve been using, with or without 
full matrix inversion. Starting with the value 1.0, multiply by the values which are used (in division) 
to reduce the initial matrix to an identity matrix; presto: the signed hypervolume of the input matrix 
– the determinant – materializes; who’d have thought the computation would be that simple? If that 
volume goes to zero – meaning that the input vectors are (somehow) collapsed on themselves, you 
might be “dead-in-the-water” using ordinary Algebra 1 techniques to solve a problem; you have an 
incomplete set of numerical partial derivatives. Fortunately HAT’s matrix inverter has features which 
bypass determinant=0. hang-ups, a key feature in ease-of-use of the software; the inverter will 
automatically reduce the size of the system appropriately and give you the next best answer – more on 
how this is done later. Without a second round of pure-gain adjustment, the determinant of  [A] “falls 
out” as: 
Determinant (= the signed hypervolume) for the 12-coefficient case: 
Row: Column: Fractional contrib: 
                  1. * 
   1       1     27.000000000000 
   7       7     15.206666666667 
   2       2     13.946062947538 
   8       8      8.163783102623 
   3       3      6.039931495913 
   4       4      5.218495100420 
   9       9      3.402570904799 
  10      10      2.166841481094 
   5       5      1.101593852033 
  11      11      0.731652394579 
   6       6      0.418126228482 
  12      12      0.153616077359 
Determinant= 562370.940460001886 
… which looks like “just another very big, not particularly insightful, number”. The dot product 
facilitates pure-gain adjustment , so let’s consider the dot product.  
 

2.) It turns out that each individual output element in any matrix multiply (ref.: page 4)  is a dot 
product of the corresponding row vector –and- column vector on the right side of the equation.  If X and 
Y are any two vectors with the same number of elements, then: 
 
X•Y = “X dot Y” 
        = a real number  (called a “scalar”, which is to say – a single number,  ≅ “not a vector”) 
        = ( X(1)*Y(1) + X(2)*Y(2) + X(3)*Y(3) + X(4)*Y(4) +…etc.)  
        = (Magnitude of X) * (Magnitude of Y) * Cosine(of the angle between X and Y in hyperspace) 
 

---------- ~ End of  “Intuition in Hyperspace” ---------- 
 

Data Scaling – Pass 2 – Pure-Gain Adjustment – G2 
To use the dot product for pure-gain adjustment, take the dot product of each data column with itself. 
The angle between a vector and itself is zero; so the cosine of the angle is 1.0.  The dot product  of 
column Y with itself becomes: 
 
Y•Y = (Magnitude of Y) * (Magnitude of Y) * 1.0 
        = (Magnitude of Y) 2                  hence the square root of this dot product is the length of Y. 
So vectors are pure-gain adjusted to length one by dividing by the square root of the dot-product of the 
vector with itself.  The idea of length also remains intuitive in hyperspace. 
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After [B] is expanded to 13 columns to accommodate the 12 polynomial coefficients, the G2 pure-gain 
adjustments for the 13 columns of  [C] are: 
 
G2: 5.196152   3.917908   3.882100   2.433105   1.649364   1.565441      Z 
    3.912480   3.006801   3.005653   1.592733   1.227905   1.226062   2.767392 
 

Dividing each column of [C] by its G2 adjustment, the upper left corner of  [Ct*C]  becomes: 
   1.000000   0.289812   0.760956   0.174012  … 
   0.289812   1.000000   0.338797  -0.186726  … 
   0.760956   0.338797   1.000000   0.195012  … 
   0.174012  -0.186726   0.195012   1.000000  … 
    …          …          …          …        … 
The values above are the cosines of the  actual angles between the various columns of data; 
the corresponding actual angles (in degrees) are: 
   0.000     73.153     40.451     79.979  … 
  73.153      0.000     70.196    100.762  … 
  40.451     70.196      0.000     78.755  … 
  79.979    100.762     78.755      0.000  … 
    …          …          …          …     … 
Determinant for the 12-coefficient case: 
Row: Column: Fractional contribution: 
                  1.0 * 
   5       5      1.000000000000 
   9       9      0.999983396784 
  10      10      0.955558140299 
   1       1      0.950096960741 
  11      11      0.819076953471 
   6       6      0.799783117546 
   8       8      0.544194470370 
   4       4      0.463868970282 
   7       7      0.407156481554 
   2       2      0.405694266581 
  12      12      0.207186023014 
   3       3      0.061769378211 
Determinant=      0.000317364340  
which tells you that only .031% of the maximum possible volume (=1.0) is enclosed by the 12 vectors. 
This gives you a sense of “how far down toward the noise” the inverter is going in computing your 
answers. In contrast, the four coefficient case using the same 27 datasets has a much more robust 
determinant: 
 
Determinant for the four-coefficient case: 
Row: Column: Fractional contribution: 
                  1.0 * 
   4       4      1.000000000000 
   3       3      0.998569858442 
   1       1      0.964149455586 
   2       2      0.851506117380 
Determinant=      0.819805043087  ~82% of the maximum volume is spanned 
 
Each step of the matrix inversion process adds a dimension to the solution. The fractional contribution 
reveals how far out of the accumulating solution hyper-subspace the next dimension protrudes; when the 
value is less than 1.0, part of that dimension has been consumed by the solution subspace. When the 
fractional contributions to the determinant = 0.0, the inverter has reached the-end-of-the- line… a 
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collapsed subspace… all the rest of the dimensions are “linearly dependent”… and some dimension(s) 
of [A] will need to be systematically discarded.  
 

So the G2 pure-gain adjustment provides intuitive insight into what’s happening inside the inversion 
hyper-subspaces, and reduces computational round off errors at the same time. 
 

Reviving Collapsed Solutions = “Eliminating linear dependence(s)” - a simple example. 
 

Let’s go back the opening problem and change Equation#3: 
         Equation#3 = +2.1*Equation#1 -3.2*Equation#2 
In a nutshell that’s “linear dependence”: when one vector equals the sum of any combination of the 
other vectors... which only happens when a vector lies within the hyper-subspace already created by 
one-or-more other vectors.  
 

Recall that the fractional contributions  show how far each new vector “sticks out” from the previous 
hyper-subspace; if the new vector doesn’t “stick out” at all, then it’s linearly dependent… and “dead 
wood”/useless… in terms of  aiding the inversion process; the inverter is trying to map the output 
(hyper)space back into the input (hyper)space, but the inverter can’t map back those dimensions of the 
input (hyper)space wherein the numerical partial derivatives are undefined. Proceeding: 
 
  Equation#1:  1.00 *A +0.20 *B +0.30 *C=  1.10   *(+2.1) 
  Equation#2:  0.30 *A +1.00 *B +0.10 *C=  2.20   *(-3.2) 
  Equation#3:  0.10 *A +0.20 *B +1.00 *C= -0.50 
Revising equation#3 to be linearly dependent : 
  Equation#3:  1.14 *A -2.78 *B +0.31 *C= -4.73 
Now watch the inverter/solver crunch on this:                        Appendix B’s  OverWriter solves this 
                                                                                                                in detail on pages 34 thru 37 . 
 
Equations:  Reduce to Identity:      Output#1:  Append an identity matrix: 
      -1         -2         -3            
-1  1.000000   0.200000   0.300000 :  1.100000   1.000000   0.000000   0.000000 
-2  0.300000   1.000000   0.100000    2.200000   0.000000   1.000000   0.000000 
-3  1.140000  -2.780000   0.310000   -4.730000   0.000000   0.000000   1.000000 
Row reductions “eliminate” one variable at a time using the largest remaining coefficient first: 
      -1          2         -3            
-1  1.082014   0.000000   0.322302    0.759712   1.000000   0.000000   0.071942 
 3 -0.410072   1.000000  -0.111511    1.701439   0.000000   0.000000  -0.359712 
-2  0.710072   0.000000   0.211511    0.498561   0.000000   1.000000   0.359712 
 

...after the 2nd row reduction: 
       1          2         -3            
-1  1.000000   0.000000   0.297872    0.702128   0.924202  0.000000  0.066489 
-3  0.000000   1.000000   0.010638    1.989362   0.378989  0.000000 -0.332447 
 2  0.000000   0.000000   0.000000    0.000000  -0.656250  1.000000  0.312500 
 

Matrix A is ill-conditioned! And the unreached space is the row and column of the 1.000000; 
simply zero out that row and column, yielding: 
       1          2         -3      Answer#1:      
 1  1.000000   0.000000   0.297872    0.702128   0.924202   0.000000   0.066489 
 3  0.000000   1.000000   0.010638    1.989362   0.378989   0.000000  -0.332447 
-2  0.000000   0.000000   0.000000    0.000000   0.000000   0.000000   0.000000 
 

I suggest the notation [A]-D = [Ad] for the chosen linearly- independent inverse subset of [A]. 
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The – sign on the indices keeps track of what rows and columns aren’t used and hence will be zero’d. In 
this example: Equation#2 and variable C have been bypassed. 
 [Ad]*[A]= 
           1.000   0.000   0.298 -> A = 1.0*A + .298*C 
           0.000   1.000   0.011 -> B = 1.0*B + .011*C 
           0.000   0.000   0.000 -> C =         .000*C 
…showing how to combine the unknowns. 
 
[A]*[Ad]= 
           1.000   0.000   0.000 -> Eqn#1= 1.000*Eqn#1 
           0.656   0.000  -0.313 -> Eqn#2=  .656*Eqn#1- .313*Eqn#3 
           0.000   0.000   1.000 -> Eqn#3=             1.000*Eqn#3 
… showing how to combine the equations. 
Eqn#2= .656*Eqn#1- .313*Eqn#3 
                        Eqn#3= 2.095*Eqn#1 -3.194*Eqn#2 
Actually, at full precision:       Eqn#3= 2.1  *Eqn#1 -3.2  *Eqn#2   as intended. 
 
HAT’s overwriter performs the same computation, but in condensed notation: 
       1      -3       2                  Answer#1: 
 1   0.924   0.000   0.066      0.702128   = A 
 3   0.379   0.000  -0.332      1.989362   = B 
-2   0.000   0.000   0.000      0.000000   = C 
 
Again: Equation#2 and variable C have been eliminated in [Ad] – because their forward partial derivative 
reduced to zero during the inversion process. The values for A, B, & C exactly satisfy Eqn#1, Eqn#2, and revised 
Eqn#3 simultaneously – but only because Equation #3 was already in the 2-D inverted subspace. 
 
When the OverWriter returns zeroed rows and columns inside the inverse matrix –  HAT has 
chosen a linearly dependent subset of the solution space to eliminate, from among several/many (at 
least two) possible choices. While it may seem more like a bother than a boon  to return these zero’d 
values, the fact is that traditional matrix inverters stop, providing none of the (hyper)spatial insight that  
[A]*[Ai] does (e.g.: above). Being able to revive collapsed solutions has analytical benefits that shine 
when solving non-linear problems, which will be briefly discussed at the end of this paper.  There’s 
one benefit that is easy to explain, applies to HAT, and is amazing (at least to me): 
 
In solving real-world engineering problems – vital information often exists within what appears to be 
(in “casual” observation) worthless noise. At the same time, real-world problems often have close, but 
not exact, partial derivatives.  Unlike the linearly dependent example above, where the third-pass partial 
derivative was 0.000000 , commonly the remaining derivatives get smaller and smaller without actually 
going to zero. Every vector that’s inverted is implicitly “a signal”, and every vector that isn’t inverted is 
“part of the noise”. So, in inversion, a “noise floor” is established that’s greater than zero, below which 
the fractional contributions to the determinants will be ignored. What amazes me is that, as the 
determinant of the incoming matrix gets closer to zero (drilling down into the noise), the determinant of 
the inverse grows by a reciprocal amount (becomes an increasingly important signal)… which would go 
to infinity in the limit. So, in the inverse matrix, the most dominant signals are right next to the noise 
that was excluded! If the noise is allowed to invert, your answers are likely to be swamped by 
nonsense! For arbitrary problems, at least part of the information supporting the accurate answers 
resides close to the source of wrong answers; the essence of accurate problem solving is that harsh! 
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…and Mother Nature isn’t even trying to deceive you, because she’s impartial… which is as close to 
“fair” as you can reasonably hope to get… mistakes that result will be yours alone - after you’ve 
outgrown HAT.  
 

Appendix A has introductory matrix solver details. 
Appendix B has  a matrix PseudoInverter, OverWriter, & Linear Dependence Eliminator.. 

Appendix C: References Hat.exe version 0.50 – presently a matrix-based Polynomial Solver. 
 
                                        ---------------------------------------------------------------- 
 

For those with keen interest in what lies beyond HAT.exe, consider: 
 

Pseudoinverse System Analysis 
 
Eventually a significant fraction of the world’s sensor calibrations will be done using physics 
models of the sensors  – characterizing sensors by adjusting the coefficients of the ir physics models to 
fit the data. Part of the elegance of this approach is that, when a sensor fails calibration, there’s a direct 
connection to what went wrong inside the sensor; another part of the elegance is that the understanding 
of the physics of the device is confirmed to be sufficiently accurate for the present purposes; another 
part of the  elegance is that the knowledge of how the device works is not lost as experts drift away from 
the project.  
 
Here are the additional concepts: 
1. Most physics models are non-linear. Imagine that “solving problems” is about finding your way to 
the bottom of an “error valley”.   Linear systems resemble “one big valley” – such that, no matter where 
you start, in one step you go the very bottom of the only valley… in a “least-squares sense”. Non-linear 
models aren’t “one big valley”, instead, they’re like range of mountains, and if you plunk yourself down 
anywhere & head downhill, you may arrive at the bottom of the wrong valley. An initial guess about the 
coefficients of your model that puts the system analyzer “in the right valley” avoids a lot of iterating. 
 
2. Given a physics model, numerical partial derivatives are easy to compute. Tweak the coefficients 
a very small amount, note the resulting changes in all the outputs, divide the output changes by the 
coefficient changes, and presto: you have the local numerical partial derivatives. 
The partial derivatives form the [B] matrix, and (the present model Z- the measured Z) form the 
Zerror vector or [Zerror] matrix. When you solve the [B]:[Zerror] system for deltaX,  the deltaX 
vector (which is a linear answer) will probably take you too far… to a place where X produces a larger 
magnitude (length) of Zerror than where you started; but keep multiplying deltaX by smaller and 
smaller step sizes, and at some closer range you’ll find lower error. Go there and repeat the process of 
generating the partials. 
 
3. Many physics models are locally linear around their correct solution. Hence, as your deltaX’s  
move the solution farther downhill, the rate of convergence usually accelerates. 
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In developing your algorithms  for Pseudoinverse System Analysis, start with a seemingly simple 
example to which you already know the answer, e.g.: 
                                                        Z =  A  * WB                    X(1)=A,  X(2)=B 
Where the actual answer is             Z = 3.0 * W2 
Using seven datasets: W=[1.,2.,3.,4.,5.,6.,7.]        tweak factor for A & B = .0000001 
 
Iteration  Step Size       A           B              Zerror 
    0      0.           0.00000000  0.00000000    77.537087899921 
    1      1.          60.00000010  0.00000000    49.112116631235 
     Note: the inverter didn’t “bomb out” with B’s partials=0. 
    2       .235620    38.56795235  0.29329714    40.530903802222 
    3       .247580    24.26810100  0.58499904    34.227718152370 
    4       .244914    15.12991934  0.87244842    29.660189115189 
    5       .243793     9.77620060  1.13994511    25.936697899004 
    6       .244955     6.85297078  1.36831328    22.118812610132 
    7       .267468     5.17028361  1.56029434    17.914464550170 
    8       .442948     3.56893485  1.81154376    12.152431891637 
     Note: the rapid convergence once “close”: 
    9      1.007952     2.83895959  2.02648293     0.688606551725 
   10      1.031367     3.00242358  1.99881980     0.104336532734 
   11       .999772     2.99999537  2.00000101     0.000026355628 
   12       .999999     3.00000000  2.00000000     0.000000000058 
   13      1.000966     3.00000000  2.00000000     0.000000000000 

 
With a known answer, it’s easy to tell when the bottom of the correct valley has been found. 

 
------------ 

Appendix P, Entry #2, page 49-50, suggests how pseudoinverse system analysis and other high-
dimensional mathematical tools may aid in achieving transparent governance. 

------------ 
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Appendix A:  An Introductory Matrix Solver 
Pages 25 thru 27 are the output of program  : “M1stUse.exe ”=” M1UseOut-AppendixA.txt” 
Pages 28 thru 31 are the BASIC source code: “M1stUse.bas”  (compiled by QuickBASIC 4.5) 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

The output datafile is: “M1USEOUT.TXT” as follows: 
Output of: 'M1stUse.exe'  version 0.40    2011.09.09 JMS 
 
             The program may have errors. 
      Input data may have been mis-interpreted. 
   USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK. 
 
Opening file 'MUSEIN.TXT' for input:              Run: 09-09-2011 15:03:54 
K-Equations:  3 
N-Unknowns :  3 
L-Outputs  :  4 
kEquations = nUnknowns 
 
[A:Y] will be solved left-to-right. 
Input from 'MUseIn.Txt':         (Trailing commas cause read errors.) 
        1          2          3       
 1     0.3000     1.0000     0.1000     2.2000     0.0000     1.0000     0.0000 
 2     1.0000     0.2000     0.3000     1.1000     1.0000     0.0000     0.0000 
 3     0.1000     0.2000     1.0000    -0.5000     0.0000     0.0000     1.0000 

This is like the opening example on page 3,  
but rows 1 & 2 have been interchanged (including I) to exercise row swapping. 

Set the noise floor: 
ValMin=     0.000000010000000 
 
----- Top of the loop: Reduce Row/column  1: ----- 
        1          2          3       
 1     0.3000     1.0000     0.1000     2.2000     0.0000     1.0000     0.0000 
 2     1.0000     0.2000     0.3000     1.1000     1.0000     0.0000     0.0000 
 3     0.1000     0.2000     1.0000    -0.5000     0.0000     0.0000     1.0000 
 
Find the largest remaining coefficient in column  1 of [A]: 
The abs(max)=           1.0000 at  n= 2 
No division needed - step skipped. 
Swapping row  2  with row  1:  [A:Y] becomes:  = the example on page 3. 
        1          2          3       
 1     1.0000     0.2000     0.3000     1.1000     1.0000     0.0000     0.0000 
 2     0.3000     1.0000     0.1000     2.2000     0.0000     1.0000     0.0000 
 3     0.1000     0.2000     1.0000    -0.5000     0.0000     0.0000     1.0000 
 
Subtract row  1  from the other rows using a multiplier: 
Reduce   row  2  using multiplier     0.3000 above;   [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.2000     0.3000     1.1000     1.0000     0.0000     0.0000 
 2     0.0000     0.9400     0.0100     1.8700    -0.3000     1.0000     0.0000 
 3     0.1000     0.2000     1.0000    -0.5000     0.0000     0.0000     1.0000 
 
Reduce   row  3  using multiplier     0.1000 above;   [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.2000     0.3000     1.1000     1.0000     0.0000     0.0000 
 2     0.0000     0.9400     0.0100     1.8700    -0.3000     1.0000     0.0000 
 3     0.0000     0.1800     0.9700    -0.6100    -0.1000     0.0000     1.0000 
                   ^ At the bottom of the loop:  this column has been reduced to the form seen in an identity matrix. 
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----- Top of the loop: Reduce Row/column  2: ----- 
        1          2          3       
 1     1.0000     0.2000     0.3000     1.1000     1.0000     0.0000     0.0000 
 2     0.0000     0.9400     0.0100     1.8700    -0.3000     1.0000     0.0000 
 3     0.0000     0.1800     0.9700    -0.6100    -0.1000     0.0000     1.0000 
 
Find the largest remaining coefficient in column  2 of [A]: 
The abs(max)=           0.9400   at  n= 2  
Dividing row  2 by      0.9400,  [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.2000     0.3000     1.1000     1.0000     0.0000     0.0000 
 2     0.0000     1.0000     0.0106     1.9894    -0.3191     1.0638     0.0000 
 3     0.0000     0.1800     0.9700    -0.6100    -0.1000     0.0000     1.0000 
 
No row swapping needed  - step skipped.  
 
Subtract row  2  from the other rows using a multiplier: 
Reduce   row  1  using multiplier     0.2000 above;   [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.0000     0.2979     0.7021     1.0638    -0.2128     0.0000 
 2     0.0000     1.0000     0.0106     1.9894    -0.3191     1.0638     0.0000 
 3     0.0000     0.1800     0.9700    -0.6100    -0.1000     0.0000     1.0000 
 
Reduce   row  3  using multiplier     0.1800 above;   [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.0000     0.2979     0.7021     1.0638    -0.2128     0.0000 
 2     0.0000     1.0000     0.0106     1.9894    -0.3191     1.0638     0.0000 
 3     0.0000     0.0000     0.9681    -0.9681    -0.0426    -0.1915     1.0000 
                                             ^ This column has been reduced to the form seen in an identity matrix. 
 
----- Top of the loop: Reduce Row/column  3: ----- 
        1          2          3       
 1     1.0000     0.0000     0.2979     0.7021     1.0638    -0.2128     0.0000 
 2     0.0000     1.0000     0.0106     1.9894    -0.3191     1.0638     0.0000 
 3     0.0000     0.0000     0.9681    -0.9681    -0.0426    -0.1915     1.0000 
 
Find the largest coefficient in column  3 of [A]: 
The abs(max)=           0.9681   at  n= 3 
Dividing row  3 by      0.9681,  [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.0000     0.2979     0.7021     1.0638    -0.2128     0.0000 
 2     0.0000     1.0000     0.0106     1.9894    -0.3191     1.0638     0.0000 
 3     0.0000     0.0000     1.0000    -1.0000    -0.0440    -0.1978     1.0330 
No row swapping needed  - step skipped.  
 
Subtract row  3  from the other rows using a multiplier: 
Reduce   row  1  using multiplier     0.2979 above;   [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.0000     0.0000     1.0000     1.0769    -0.1538    -0.3077 
 2     0.0000     1.0000     0.0106     1.9894    -0.3191     1.0638     0.0000 
 3     0.0000     0.0000     1.0000    -1.0000    -0.0440    -0.1978     1.0330 
 
Reduce   row  2  using multiplier     0.0106 above;   [A:Y] becomes: 
        1          2          3       
 1     1.0000     0.0000     0.0000     1.0000     1.0769    -0.1538    -0.3077 
 2     0.0000     1.0000     0.0000     2.0000    -0.3187     1.0659    -0.0110 
 3     0.0000     0.0000     1.0000    -1.0000    -0.0440    -0.1978     1.0330 
                                                                       ̂  This column has been reduced to the form seen in an identity matrix. 
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*** 'm1stUse.exe' - the solution of your input [A:Y] is: *** 
[I:X] = 
        1          2          3      Answer#1: &  The inverse: 
 1     1.0000     0.0000     0.0000     1.0000     1.0769    -0.1538    -0.3077 
 2     0.0000     1.0000     0.0000     2.0000    -0.3187     1.0659    -0.0110 
 3     0.0000     0.0000     1.0000    -1.0000    -0.0440    -0.1978     1.0330 
                                                   Perp#1     Perp#2     Perp#3 
 
Note: The listing order of the equations  doesn’t affect Answer#1, but swaps the columns  of  the inverse. 
          Here the inverse is unchanged because the rows of the appended I were re-ordered along with the equations. 
 
The Answers for each of your `L-Output` columns: 
Answers for column  1: Answer#1 
Unknown  1=         1.000000000000 
Unknown  2=         2.000000000000 
Unknown  3=        -1.000000000000 
 
Answers for column  2:  Perp#1 
Unknown  1=         1.076923076923 
Unknown  2=        -0.318681318681 
Unknown  3=        -0.043956043956 
 
Answers for column  3:  Perp#2 
Unknown  1=        -0.153846153846 
Unknown  2=         1.065934065934 
Unknown  3=        -0.197802197802 
 
Answers for column  4:  Perp#3 
Unknown  1=        -0.307692307692 
Unknown  2=        -0.010989010989 
Unknown  3=         1.032967032967 
 
Done: 09-09-2011 15:03:54. 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

The  input  datafile: “M1USEIN.TXT” first/top dataset used above :       (expanded listing: pages 32-33) 
3,      3,      4 
0.30,   1.00,   0.10,   2.20,   0.0,   1.0,   0.0 
1.00,   0.20,   0.30,   1.10,   1.0,   0.0,   0.0 
0.10,   0.20,   1.00,  -0.50,   0.0,   0.0,   1.0 
                                   Unused information follows. 
Example vsn 0.50 ~Page  3:  3 equations, 3 unknowns, 4 outputs 

This is like the opening example on page 3,  
but rows 1 & 2 are interchanged (including I) to demonstrate the row swapping. 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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The BASIC source code: “M1stUse.bas” follows. 
The ~42 lines of code that actually solve [A:Y] are in black bold print. 
 
DECLARE SUB PrintAY (nUnk%, MCol%) 
 
REM --------------------------------------------------------------------------- 
REM Program M1stUse.bas  version 0.50  2011.09.09 Jeff Setterholm 
 
REM Correct numerical examples reduce debug time when writing algorithms. 
CLS 
CLOSE #14 
 
PRINT "M1stUse.exe    version 0.50          2011.09.09 JMS" 
PRINT "" 
PRINT "   `Matrix 1st Use` - An Introductory Matrix Solver, " 
PRINT "            written in BASIC. Solves [A:Y]. " 
PRINT "     The QuickBasic 4.5 source code is provided." 
PRINT "M1stUse.exe is limited to:" 
PRINT "     1. kEquations=nUnknowns," 
PRINT "     2. Linearly independent equations,  and" 
PRINT "     3. Solution left-to-right across the matrix." 
PRINT " " 
PRINT "M1stUse.exe:" 
PRINT "    Reads the first (top) dataset in  'MUSEIN.TXT'" 
PRINT "    Writes output/results to:       'M1USEOUT.TXT'" 
PRINT "" 
PRINT "  ( MUse.exe is a more  powerful   matrix solver," 
PRINT "         but is   more complicated as a result.   )" 
PRINT "" 
PRINT "         This program may have errors." 
PRINT "       Input data may be mis-interpreted." 
PRINT "     USE THIS PROGRAM ONLY AT YOUR OWN RISK." 
PRINT "  Type 'A' to accept the risks or 'Q' to quit:"; 
INPUT Accept$ 
IF Accept$ = "A" GOTO 10 
IF Accept$ = "a" GOTO 10 
END 
10 REM 
 
PRINT "Opening file 'M1USEOUT.TXT' for output:" 
OPEN "M1USEOUT.TXT" FOR OUTPUT AS #14 
 
PRINT #14, "Output of: 'M1stUse.exe'  version 0.50    2011.09.09 JMS" 
PRINT #14, "" 
PRINT #14, "             The program may have errors." 
PRINT #14, "      Input data may have been mis-interpreted." 
PRINT #14, "   USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK." 
PRINT #14, "" 
 
PRINT "Opening file 'MUSEIN.TXT'   for input:" 
PRINT #14, "Opening file 'MUSEIN.TXT' for input:             "; 
PRINT #14, USING "     Run: & &"; DATE$; TIME$ 
OPEN "MUSEIN.TXT" FOR INPUT AS #12 
 
REM --- 
REM QuickBASIC 4.5 syntax: 
REM   ' :text following an apostrophe is a "Remark" (not compiled); 
'     variables ending in % are 16-bit integers; 
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'     variables ending in # are 64-bit`double precision`floating point numbers; 
'     QB4.5 is ~ not case sensitive. 
'I use variable names starting with i,j,k,l,m,& n for integers. 
 
INPUT #12, kEqu%, nUnk%, LOut% 
PRINT #14, USING "K-Equations: ##"; kEqu% 
PRINT #14, USING "N-Unknowns : ##"; nUnk% 
PRINT #14, USING "L-Outputs  : ##"; LOut% 
IF (kEqu% <> nUnk%) THEN 
  PRINT "The number of Equations must equal the number of Unknowns. Halt." 
  PRINT #14, "The number of Equations must equal the number of Unknowns. Halt." 
  REM STOP 
  END 
END IF '(kEqu%<>nUnk%) 
PRINT #14, "kEquations = nUnknowns" 
PRINT #14, "" 
PRINT #14, "[A:Y] will be solved left-to-right." 
 
MCol% = nUnk% + LOut%           'MCol%= total number of columns of matrix [A:Y] 
DIM AY#(nUnk%, MCol%) 
 
FOR k% = 1 TO kEqu% 
  FOR m% = 1 TO MCol% 
    INPUT #12, AY#(k%, m%) 
  NEXT m% 
NEXT k% 
PRINT "Closing file 'MUSEIN.TXT'." 
CLOSE #12 
PRINT #14, "Input from 'MUseIn.Txt':"; 
PRINT #14, "         (Trailing commas cause read errors.)" 
CALL PrintAY(nUnk%, MCol%) 
 
REM Solve AY#[]=[A:Y] left-to-right: 
 
PRINT #14, "Set the noise floor:" 
ValMin# = ABS(AY#(1, 1)) 
FOR n% = 1 TO nUnk% 
  FOR m% = 1 TO nUnk% 
    IF (ValMin# < ABS(AY#(n%, m%))) THEN 
        ValMin# = ABS(AY#(n%, m%)) 
    END IF 
  NEXT m% 
NEXT n% 
ValMin# = ValMin# / 100000000# 
PRINT #14, USING "ValMin=######.###############"; ValMin# 
PRINT #14, “” 
 
FOR NextCol% = 1 TO nUnk% 
  PRINT #14, USING "----- Top of the Loop: Reduce Row/column###: -----"; NextCol% 
  CALL PrintAY(nUnk%, MCol%) 
 
  PRINT #14, USING "Find the largest coeff. in column ## of [A]:"; NextCol% 
  ValMax# = ValMin# 
  nRowMax% = 0 
  FOR nRowTest% = NextCol% TO nUnk% 
    IF (ABS(ValMax#) < ABS(AY#(nRowTest%, NextCol%))) THEN 
            ValMax#  =     AY#(nRowTest%, NextCol%) 
            nRowMax% =         nRowTest% 
    END IF 
  NEXT nRowTest% 
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  IF (nRowMax% = 0) THEN 
    PRINT "The input equations are linearly dependent." 
    PRINT #14, "The input equations are linearly dependent. Halt." 
    PRINT "Closing file 'M1USEOUT.TXT'." 
    CLOSE #14 
    PRINT "Halt." 
    END 
  END IF '(nRowMax%=0) 
  PRINT #14, USING "The abs(max)=     #######.####"; ValMax#; 
  PRINT #14, USING "   at  n=##"; nRowMax% 
 
  IF (ValMax# <> 1#) THEN 
    PRINT #14, USING "Dividing row ## by ######.####,"; nRowMax%; ValMax#; 
    PRINT #14, "  [A:Y] becomes:" 
    FOR m% = 1 TO MCol% 
       AY#(nRowMax%, m%) = AY#(nRowMax%, m%) / ValMax# 
    NEXT m% 
    CALL PrintAY(nUnk%, MCol%) 
   ELSE 
    PRINT #14, "No division needed - step skipped." 
    PRINT #14, "" 
  END IF '(ValMax#<>1#) 
 
  IF (nRowMax% <> NextCol%) THEN 
    PRINT #14, USING "Swapping row ##  with row ##:"; nRowMax%; NextCol%; 
    PRINT #14, "   [A:Y] becomes:" 
    FOR m% = 1 TO MCol% 
      A1# = AY#(nRowMax%, m%) 
            AY#(nRowMax%, m%) = AY#(NextCol%, m%) 
                                AY#(NextCol%, m%) = A1# 
    NEXT m% 
    CALL PrintAY(nUnk%, MCol%) 
   ELSE 
    PRINT #14, "No row swapping needed - step skipped." 
    PRINT #14, "" 
  END IF '(nRowMax%<>NextCol%) 
 
  PRINT #14, USING "Subtract row ##  from the other rows"; NextCol%; 
  PRINT #14, " using a multiplier:" 
  FOR n% = 1 TO nUnk% 
    IF (n% <> NextCol%) THEN 
                                     ValNext# = AY#(n%, NextCol%) 
      FOR m% = 1 TO MCol% 
         AY#(n%, m%) = AY#(n%, m%) - ValNext# * AY#(NextCol%, m%) 
      NEXT m% 
      PRINT #14, USING "Reduce   row ## "; n%; 
      PRINT #14, USING " using multiplier #####.#### above; "; ValNext#; 
      PRINT #14, "  [A:Y] becomes:" 
      CALL PrintAY(nUnk%, MCol%) 
    END IF '(n%<>NextCol%) 
  NEXT n% 
NEXT NextCol% 
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PRINT #14, "*** 'm1stUse.exe' - the solution of your input [A:Y] is: ***" 
PRINT #14, "[I:X] =" 
CALL PrintAY(nUnk%, MCol%) 
IF (LOut% > 0) THEN 
  PRINT #14, "The Answers for each of your `L-Output` columns:" 
  FOR L% = 1 TO LOut% 
    PRINT #14, USING "Answers for column ##:"; L% 
    FOR n% = 1 TO nUnk% 
      PRINT #14, USING "Unknown###="; n%; 
      PRINT #14, USING " #########.############"; AY#(n%, nUnk% + L%) 
    NEXT n% 
    PRINT #14, "" 
  NEXT L% 
END IF '(LOut% > 0) 
 
PRINT #14, USING "Done: & &."; DATE$; TIME$ 
PRINT "Closing file 'M1USEOUT.TXT'." 
PRINT USING "Done: & &            Press escape."; DATE$; TIME$ 
CLOSE #14 
END 
REM --------------------------------------------------------------------------- 
SUB PrintAY (nUnk%, MCol%) 
  SHARED AY#() 
  PRINT #14, "   "; 
  FOR m% = 1 TO nUnk% 
    PRINT #14, USING "######     "; m%; 
  NEXT m% 
  PRINT #14, " " 
  FOR n% = 1 TO nUnk% 
    PRINT #14, USING "##"; n%; 
    FOR m% = 1 TO MCol% 
      PRINT #14, USING "######.####"; AY#(n%, m%); 
    NEXT m% 
    PRINT #14, "" 
  NEXT n% 
  PRINT #14, "" 
END SUB 
---------------------------------------------------------------------------------- 
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The  input  datafile: “MUSEIN.TXT”: Used by both “M1stUse.exe” & “MUse.exe” 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
3,      3,      4 
0.30,   1.00,   0.10,   2.20,   0.0,   1.0,   0.0 
1.00,   0.20,   0.30,   1.10,   1.0,   0.0,   0.0 
0.10,   0.20,   1.00,  -0.50,   0.0,   0.0,   1.0 
                                   Unused information follows. 
Example vsn. 0.50 ~Page  3:  3 equations, 3 unknowns, 4 outputs...  [A:Y] 
Opening example - but rows 1 & 2 are interchanged (including I) 
                          to show row swapping. 
                - Row swapping restores the original example 
                          and the solution proceeds. 
The test case polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y 
-------------------------------------------------------------- 
Test datasets for: M1stUse.bas/.exe  version 0.50    2011.09.09 Jeff Setterholm 
                             (A simple matrix solver for kEquations=nUnknowns.) 
              and: MUse.bas   /.exe  version 0.50 
                             (An OverWriting matrix solver.) 
                   ^Both these programs relate to Hat.pdf version 0.50 
 
Only the top dataset is read and used. 
 
Note: Trailing commas will cause data misreads. 
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y 
-------------------------------------------------------------- 
3,      3,      4 
1.00,   0.20,   0.30,   1.10,   1.0,   0.0,   0.0 
0.30,   1.00,   0.10,   2.20,   0.0,   1.0,   0.0 
0.10,   0.20,   1.00,  -0.50,   0.0,   0.0,   1.0 
                                   Unused information follows. 
Example vsn. 0.50 ~Page  3:  3 equations, 3 unknowns, 4 outputs...  [A:Y] 
Opening example 
The test case polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y 
-------------------------------------------------------------- 
3,      3,      4 
1.00,   0.20,   0.30,   1.10,   1.0,   0.0,   0.0 
0.30,   1.00,   0.10,   2.20,   0.0,   1.0,   0.0 
1.14,  -2.78,   0.31,  -4.73,   0.0,   0.0,   1.0 
                                   Unused information follows. 
Appendix B's TestCase for MUse.exe: Linear Depencence 
Example vsn 0.50 ~Page 21:   4 equations, 3 unknowns, 1 output...  [A:Y] 
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y 
-------------------------------------------------------------- 
12, 12, 1 
  1.,    1. ,   1.  ,  0.20,  0.20,  0.20,  0.30,  0.30,  0.30 , 0.06,  0.06,  0.06 , 1.1 
  1.,    0.3,   0.09,  1.  ,  0.3 ,  0.09,  0.1 ,  0.03,  0.009, 0.1 ,  0.03,  0.009, 2.2 
  1.,    0.1,   0.01,  0.2 ,  0.02,  0.002, 1.  ,  0.1 ,  0.01 , 0.2 ,  0.02,  0.002,-0.5 
  1.,   -1. ,   1.  ,  0.3 , -0.3 ,  0.3 ,  0.2 , -0.2 ,  0.2  , 0.06, -0.06,  0.06 ,-0.6 
  1.,    0.5,   0.25, -1.  , -0.5 , -0.25, -0.3 , -0.15, -0.075, 0.3 ,  0.15,  0.075,-1.2 
  1.,   -1. ,   1.  ,  0.  ,  0.  ,  0.  ,  2.  , -2.  ,  2.   , 0.  ,  0.  ,  0.   ,-3.0 
  1.,   -1. ,   1.  ,  0.5 , -0.5 ,  0.5 , -2.  ,  2.  , -2.   ,-1.  ,  1.  , -1.   , 2.0 
  1.,   -1. ,   1.  ,  0.5 , -0.5 ,  0.5 ,  2.  , -2.  ,  2.   , 1.  , -1.  ,  1.   ,-2.0 
  1.,    1. ,   1.  , -0.5 , -0.5 , -0.5 , -2.  , -2.  , -2.   , 1.  ,  1.  ,  1.   , 2.0 
  1.,    0. ,   0.  ,  0.5 ,  0.  ,  0.  , -2.  ,  0.  ,  0.   ,-1.  ,  0.  ,  0.   , 3.0 
  1.,    1. ,   1.  , -0.5 , -0.5 , -0.5 ,  2.  ,  2.  ,  2.   ,-1.  , -1.  , -1.   ,-2.0 
  1.,    1. ,   1.  ,  0.5 ,  0.5 ,  0.5 , -2.  , -2.  , -2.   ,-1.  , -1.  , -1.   , 4.0 
                                                               Unused information follows. 
        X(1)^1        X(2)^1               X(3)^1                                      Y 
 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3:  Y 
 ^0^0^0 ^1^0^0 ^2^0^0 ^0^1^0 ^1^1^0 ^2^1^0 ^0^0^1 ^1^0^1 ^2^0^1 ^0^1^1 ^1^1^1 ^2^1^1 
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Example vsn 0.50 ~Page 12: 12 of the 27 equations, 12 unknowns, 1 outputs 
These are some of the polynomial partial derivatives and outputs of a testcase polynomial. 
The test case polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
5     3     1 
 1.0,  0.2,  0.3,  1.1 
 0.3,  1.0,  0.1,  2.2 
 0.1,  0.2,  1.0, -0.5 
-1.0,  0.3,  0.2, -0.6 
 0.5, -1.0, -0.3, -1.2  
                                   Unused information follows. 
Example vsn 0.50 ~Page  6:  5 equations, 3 unknowns, 1 outputs ...  [B:Z] 
More equations than unknowns 
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Z 
-------------------------------------------------------------- 
27,    3,    1 
    1.0 ,  0.2 ,  0.3 ,  1.1 
    0.3 ,  1.0 ,  0.1 ,  2.2 
    0.1 ,  0.2 ,  1.0 , -0.5 
   -1.0 ,  0.3 ,  0.2 , -0.6 
    0.5 , -1.0 , -0.3 , -1.19 
   -1.00,  0.00,  2.00, -3.00 
   -1.00,  0.50, -2.00,  2.00 
   -1.00,  0.50,  0.00,  0.00 
   -1.00,  0.50,  2.00, -2.00 
    0.00, -0.50, -2.00,  1.00 
    0.00, -0.50,  0.00, -1.00 
    0.00, -0.50,  2.00, -3.00 
    0.00,  0.00, -2.00,  2.00 
    0.00,  0.00,  0.00,  0.00 
    0.00,  0.00,  2.00, -2.00 
    0.00,  0.50, -2.00,  3.00 
    0.00,  0.50,  0.00,  1.00 
    0.00,  0.50,  2.00, -1.00 
    1.00, -0.50, -2.00,  2.00 
    1.00, -0.50,  0.00,  0.00 
    1.00, -0.50,  2.00, -2.00 
    1.00,  0.00, -2.00,  3.00 
    1.00,  0.00,  0.00,  1.00 
    1.00,  0.00,  2.00, -1.00 
    1.00,  0.50, -2.00,  4.00 
    1.00,  0.50,  0.00,  2.00 
    1.00,  0.50,  2.00,  0.00 
                                   Unused information follows. 
    X(1)   X(2)   X(3)    Y 
 
Example vsn 0.50 ~Page 11: 27 equations, 3 unknowns, 1 outputs ...  [B:Z] 
equations>unknowns; dataset with Y(5) noise. 
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Z 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

^ This is a partial listing. For the full listing, download: 
http://ftp.setterholm.com/PseudoInverse/AppendixA/MUseIn.txt  
                                                                    as well as:  /M1stUse.bas,   
                                                                                     /M1stUse.txt ,   
                                                                                &  /m1stUse.exe 
 

End of Appendix A:  An Introductory Matrix Solver 
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Appendix B: Matrix Solver Details 

 
The BASIC source code of “MUse.bas/.exe: 

A Matrix PseudoInverter, OverWriter, & Linear Dependence Eliminator. 
 

http://ftp.setterholm.com/PseudoInverse/AppendixB  includes: 
09/14/2011  09:38 AM            21,297 MUse.bas               … listed here. 
09/14/2011  09:39 AM            53,448 MUSE.EXE 
09/09/2011  03:08 PM             9,711 MUSEIN.TXT 
09/14/2011  09:39 AM             7,785 MUSEOUT-AppendixB.TXT  … listed here. 
09/14/2011  07:54 AM             9,119 MUSEOUT-Page6Example.TXT 
08/09/2011  08:36 AM             1,205 _StDos.bat 
 

Pages 34 thru 37 are “MUseOut.txt”; 
pages 38 thru 47 are  : “MUse.bas” 
 “MUseOut.txt”: 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Output of: 'MUse.exe'     version 0.40    Run: 09-14-2011 09:39:38 
 
A Matrix OverWriter & Linear Dependence Eliminator in action... 
 
             The program may have errors. 
      Input data may have been mis-interpreted. 
   USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK! 
 
   This output is intended to be useful as 'TestCase Data' 
  in writing and debugging your own Matrix OverWriter code 
           in your computer language of choice. 
 
Opening file 'MUSEIN.TXT'  for input:                  Run: 09-14-2011 09:00:24 
K-Equations:  3 
N-Unknowns :  3 
L-Outputs  :  1 
Your input matrix:          (Trailing commas cause read errors.) 
         1            2            3         
  1     1.000000     0.200000     0.300000     1.100000 
  2     0.300000     1.000000     0.100000     2.200000 
  3     1.140000    -2.780000     0.310000    -4.730000  
                                              … this is the problem on page 21. 
--- Entering: kEquations = nUnknowns; solve directly: --- 
             Coefficients: The Outputs  
Your input: [    [A]    :   [Y]     ] 
   solving: [    [A]    :   [Y]     ] 
 
  yielding: [    [Ai]   :   [X]     ] 
      i.e.:  The inverse:The Answers  
     ...an '~exact fit' if [A] is linearly independent. 
 
Matrix to be solved: 
         1            2            3         
  1     1.000000     0.200000     0.300000     1.100000 
  2     0.300000     1.000000     0.100000     2.200000 
  3     1.140000    -2.780000     0.310000    -4.730000 
 
--- Entering Subroutine OverWriter(): --- 
 
Set the noise floor: 
ValMin=     0.000000027800000 
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   *** Top of the loop: Iteration  1: *** 
        -1           -2           -3         
 -1     1.000000     0.200000     0.300000     1.100000 
 -2     0.300000     1.000000     0.100000     2.200000 
 -3     1.140000    -2.780000     0.310000    -4.730000 
 
The abs(max)=          -2.7800 at  n=  3  m= 2 
Det.Product =          -2.780000 
Divide row  3 by       -2.7800: 
        -1            2           -3         
 -1     1.000000     0.200000     0.300000     1.100000 
 -2     0.300000     1.000000     0.100000     2.200000 
  3    -0.410072     1.000000    -0.111511     1.701439 
 
Swap row  3  with row  2: 
        -1            2           -3         
 -1     1.000000     0.200000     0.300000     1.100000 
  3    -0.410072     1.000000    -0.111511     1.701439 
 -2     0.300000     1.000000     0.100000     2.200000 
 
Swap column  2  with column  3: 
        -1           -3            2         
 -1     1.000000     0.300000     0.200000     1.100000 
  3    -0.410072    -0.111511     1.000000     1.701439 
 -2     0.300000     0.100000     1.000000     2.200000 
 
Subtract iPivot row  2 from the other rows using a multiplier: 
Reduce   row  1  using multiplier     0.2000 above:  
        -1           -3            2         
 -1     1.082014     0.322302     0.000000     0.759712 
  3    -0.410072    -0.111511     1.000000     1.701439 
 -2     0.300000     0.100000     1.000000     2.200000 
 
Reduce   row  3  using multiplier     1.0000 above:  
        -1           -3            2         
 -1     1.082014     0.322302     0.000000     0.759712 
  3    -0.410072    -0.111511     1.000000     1.701439 
 -2     0.710072     0.211511     0.000000     0.498561 
 
and OverWrite the inverse in column  3   [A:Y] becomes: 
        -1           -3            2         
 -1     1.082014     0.322302     0.071942     0.759712 
  3    -0.410072    -0.111511    -0.359712     1.701439 
 -2     0.710072     0.211511     0.359712     0.498561 
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   *** Top of the loop: Iteration  2: *** 
        -1           -3            2         
 -1     1.082014     0.322302     0.071942     0.759712 
  3    -0.410072    -0.111511    -0.359712     1.701439 
 -2     0.710072     0.211511     0.359712     0.498561 
 
The abs(max)=           1.0820 at  n=  1  m= 1 
Det.Product =          -3.008000 
Divide row  1 by        1.0820: 
         1           -3            2         
  1     1.000000     0.297872     0.066489     0.702128 
  3    -0.410072    -0.111511    -0.359712     1.701439 
 -2     0.710072     0.211511     0.359712     0.498561 
No row swapping needed - step skipped. 
No column swapping needed - step skipped. 
 
Subtract iPivot row  1 from the other rows using a multiplier: 
Reduce   row  2  using multiplier    -0.4101 above:  
         1           -3            2         
  1     1.000000     0.297872     0.066489     0.702128 
  3     0.000000     0.010638    -0.332447     1.989362 
 -2     0.710072     0.211511     0.359712     0.498561 
 
Reduce   row  3  using multiplier     0.7101 above:  
         1           -3            2         
  1     1.000000     0.297872     0.066489     0.702128 
  3     0.000000     0.010638    -0.332447     1.989362 
 -2     0.000000     0.000000     0.312500    -0.000000 
 
and OverWrite the inverse in column  1   [A:Y] becomes: 
         1           -3            2         
  1     0.924202     0.297872     0.066489     0.702128 
  3     0.378989     0.010638    -0.332447     1.989362 
 -2    -0.656250     0.000000     0.312500    -0.000000 
 
   *** Top of the loop: Iteration  3: *** 
         1           -3            2         
  1     0.924202     0.297872     0.066489     0.702128 
  3     0.378989     0.010638    -0.332447     1.989362 
 -2    -0.656250     0.000000     0.312500    -0.000000 
 
The input equations are linearly dependent. 
  Negative indices indicate dependent rows & columns. 
Overwriter inverse zero-ing uses the negative indices. 
Salvaging a linearly-independent subset of [Ai] as [Ad]: 
         1           -3            2         
  1     0.924202     0.000000     0.066489     0.702128 
  3     0.378989     0.000000    -0.332447     1.989362 
 -2     0.000000     0.000000     0.000000     0.000000 
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*** Solver's results: *** 
Determinant =          -3.008000 
       Rank =           2 
         1           -3            2         
  1     0.924202     0.000000     0.066489     0.702128 = A 
  3     0.378989     0.000000    -0.332447     1.989362 = B 
 -2     0.000000     0.000000     0.000000     0.000000 = C 
           |-------------------     [Ai]  with     -------------------|-- Answer#1 --| 
                          linear dependence eliminated. 
 

OverWriter Check: [Ap]*[A] = [I] ? No. 
         1           -3            2         
  1     1.000000     0.000000    -0.000000 
  3     0.656250     0.000000    -0.312500 
 -2     0.000000     0.000000     1.000000 
 

OverWriter Check: [A]*[Ap] = [I] ? No. 
         1           -3            2         
  1     1.000000    -0.000000     0.297872 
  3    -0.000000     1.000000     0.010638 
 -2     0.000000     0.000000     0.000000 
 
--- Exiting  Subroutine OverWriter(): --- 
 
--- Entering Subroutine ErrorEval(): --- 
 
*** Answers & Error evaluation: *** 
Answers for column  1: 
Unknown  1=         0.702127659574 =  7.021276595745D-001 
Unknown  2=         1.989361702128 =  1.989361702128D+000 
Unknown  3=         0.000000000000 =  0.000000000000D+000 
 
Error evaluation for column  1: 
Equation:    Ycomputed  -       Yin      =       Yerror 
   1:       1.100000000       1.100000000       0.000000000 =  0.000000000D+000 
   2:       2.200000000       2.200000000       0.000000000 =  0.000000000D+000 
   3:      -4.730000000      -4.730000000       0.000000000 =  0.000000000D+000 
 
                             RMS   error=       0.000000000 =  0.000000000D+000 
 
--- Exiting  Subroutine ErrorEval(): --- 
 
 [Ai]*[A] = [I] ?                   No. 
         1            2            3         
  1     1.000000    -0.000000     0.297872 
  2    -0.000000     1.000000     0.010638 
  3     0.000000     0.000000     0.000000 
                                        … the significance is explained on page 22. 
 [A]*[Ai] = [I] ?                   No. 
         1            2            3         
  1     1.000000     0.000000    -0.000000 
  2     0.656250     0.000000    -0.312500 
  3     0.000000     0.000000     1.000000 
                                        … the significance is explained on page 22. 
 
--- Exiting:  kEquations = nUnknowns --- 
Done: 09-14-2011 09:39:38 - closing MUSEOUT.TXT -----------------------------------
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: “MUse.bas”: 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
DECLARE SUB PrintAY (nRows%, mCols%, AYsee#()) 
DECLARE SUB OverWriter (nUnk%, mCol%, AY#()) 
DECLARE SUB ErrorEval (kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%) 
DECLARE SUB PrintowAY (nRows%, mCols%, AYsee#(), nUsed%(), mUsed%()) 
REM --------------------------------------------------------------------------- 
REM Program MUse.bas     version 0.50  2011.09.14 Jeff Setterholm 
 
REM BASIC compilers are ubiquitous. 
REM Correct numerical examples reduce debug time when writing algorithms. 
CLS 
CLOSE #14 
 
PRINT "MUse.exe       version 0.50          2011.09.14 JMS" 
PRINT "" 
PRINT "             `Matrix Use` - a matrix solver. " 
PRINT "A Matrix OverWriter & Linear Dependence Eliminator... in action." 
PRINT "    Written in BASIC.  Solves [A:Y] =   itself    (equations=unknowns)" 
PRINT "                                         -or-                         " 
PRINT "                                    = [Bt*B:Bt*Z]    (PseudoInverse). " 
PRINT "         The QuickBasic 4.5 source code is provided." 
PRINT "" 
PRINT "     The output is intended to be useful as 'TestCase Data'" 
PRINT "    in writing and debugging your own Matrix OverWriter code" 
PRINT "             in your computer language of choice." 
PRINT "" 
PRINT "MUse.exe:" 
PRINT "    Reads the first (top) dataset in 'MUSEIN.TXT'" 
PRINT "    Writes output/results to:       'MUSEOUT.TXT'" 
PRINT "" 
REM --- Cautions & Acknowledgement: --- 
PRINT "         This program may have errors." 
PRINT "       Input data may be mis-interpreted." 
PRINT "     USE THIS PROGRAM ONLY AT YOUR OWN RISK." 
PRINT "  Type 'A' to accept the risks or 'Q' to quit:"; 
INPUT Accept$ 
IF ((Accept$ <> "A") AND (Accept$ <> "a")) THEN END 
 
PRINT "" 
PRINT "Opening file 'M1USEOUT.TXT' for output:" 
OPEN "MUSEOUT.TXT" FOR OUTPUT AS #14 
 
PRINT #14, "Output of: 'MUse.exe'     version 0.50    2011.09.14 JMS" 
PRINT #14, "" 
PRINT #14, "A Matrix OverWriter & Linear Dependence Eliminator in action..." 
PRINT #14, "" 
PRINT #14, "             The program may have errors." 
PRINT #14, "      Input data may have been mis-interpreted." 
PRINT #14, "   USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK!" 
PRINT #14, "" 
PRINT #14, "   This output is intended to be useful as 'TestCase Data'" 
PRINT #14, "  in writing and debugging your own Matrix OverWriter code" 
PRINT #14, "           in your computer language of choice." 
PRINT #14, "" 
REM           --- End C&A. --- 
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PRINT "Opening file 'MUSEIN.TXT'   for input:" 
PRINT #14, "Opening file 'MUSEIN.TXT'  for input:             "; 
PRINT #14, USING "     Run: & &"; DATE$; TIME$ 
 
REM --- 
REM QuickBASIC 4.5 syntax: 
REM   ' :text following an apostrophe is a "Remark" (not compiled); 
'     variables ending in % are 16-bit integers; 
'     variables ending in # are 64-bit`double precision`floating point numbers; 
'     QB4.5 is ~ not case sensitive. 
'I use variable names starting with i,j,k,l,m,& n for integers. 
 
OPEN "MUSEIN.TXT" FOR INPUT AS #12            '-- Data input: 
    INPUT #12, kEqu%, nUnk%, LOut% 
    PRINT #14, USING "K-Equations: ##"; kEqu% 
    PRINT #14, USING "N-Unknowns : ##"; nUnk% 
    PRINT #14, USING "L-Outputs  : ##"; LOut% 
                        mCol% = nUnk% + LOut%    'number of Columns. 
 
  kEqu2% = kEqu%                                 'avoids "variable ailiasing" 
  nUnk2% = nUnk%                                 '  in calls to subroutines. 
 
IF (kEqu% = nUnk%) THEN '------------------------- kEquations=nUnknowns: 
    DIM AY#(nUnk%, mCol%)                        'Continue with data read: 
    FOR n% = 1 TO nUnk% 
      FOR m% = 1 TO mCol% 
        INPUT #12, AY#(n%, m%) 
      NEXT m% 
    NEXT n% 
    PRINT "Closing file 'MUSEIN.TXT'." 
  CLOSE #12                                      'Data read completed. 
 
  PRINT #14, "Your input matrix:          (Trailing commas cause read errors.)" 
  CALL PrintAY(nUnk%, mCol%, AY#())              'Print the input matrix: 
  PRINT #14, "--- Entering: kEquations = nUnknowns; solve directly: ---" 
  PRINT #14, "             Coefficients: The Outputs " 
  PRINT #14, "Your input: [    [A]    :   [Y]     ]" 
  PRINT #14, "   solving: [    [A]    :   [Y]     ]" 
  PRINT #14, "" 
  PRINT #14, "  yielding: [    [Ai]   :   [X]     ]" 
  PRINT #14, "      i.e.:  The inverse:The Answers " 
  PRINT #14, "     ...an '~exact fit' if [A] is linearly independent." 
  PRINT #14, "" 
  PRINT #14, "Matrix to be solved:" 
  CALL PrintAY(kEqu%, mCol%, AY#()) 
 
  DIM AiX#(nUnk%, mCol%)                      '-- Solve the equations: 
  FOR n% = 1 TO nUnk% 
    FOR m% = 1 TO mCol% 
      AiX#(n%, m%) = AY#(n%, m%)                 'Saves [A:Y] for use below. 
    NEXT m% 
  NEXT n% 
  CALL OverWriter(nUnk%, mCol%, AiX#())          'Solves [Ai:X] (<-[A:Y]) 
  IF (LOut% > 0) THEN                            'Evaluate the accuracy: 
   iAX1BZ2% = 1 
   CALL ErrorEval(kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%) 
  END IF '(LOutputs>0) 
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  REM ------ 
  PRINT #14, "[Ai]*[A] = [I] ?" 
  DIM AiA#(nUnk%, nUnk2%) 
  FOR n% = 1 TO nUnk%                            '[Ai:A]=[Ai]*[A] 
    FOR m% = 1 TO nUnk% 
      FOR nm% = 1 TO nUnk% 
        AiA#(n%, m%) = AiA#(n%, m%) + AiX#(n%, nm%) * AY#(nm%, m%) 
      NEXT nm% 
    NEXT m% 
  NEXT n% 
  CALL PrintAY(nUnk%, nUnk2%, AiA#()) 
  ERASE AiA# 
 
  PRINT #14, "" 
  PRINT #14, "[A]*[Ai] = [I] ?" 
  DIM AAi#(nUnk%, nUnk2%) 
  FOR n% = 1 TO nUnk%                            '[A:Ai]=[A]*[Ai] 
    FOR m% = 1 TO nUnk% 
      FOR nm% = 1 TO nUnk% 
        AAi#(n%, m%) = AAi#(n%, m%) + AY#(n%, nm%) * AiX#(nm%, m%) 
      NEXT nm% 
    NEXT m% 
  NEXT n% 
  CALL PrintAY(nUnk%, nUnk2%, AAi#()) 
  ERASE AAi# 
 
  ERASE AY# 
  ERASE AiX# 
 
  PRINT #14, "" 
  PRINT #14, "--- Exiting:  kEquations = nUnknowns ---" 
 
 ELSE '------------------------------------------- kEquations<>nUnknowns: 
    DIM BZ#(kEqu%, mCol%)                         'Continue with data read: 
    FOR K% = 1 TO kEqu% 
      FOR m% = 1 TO mCol% 
        INPUT #12, BZ#(K%, m%) 
      NEXT m% 
    NEXT K% 
    PRINT "Closing file 'MUSEIN.TXT'." 
  CLOSE #12                                      'Data read completed. 
 
  PRINT #14, "Your input matrix:          (Trailing commas cause read errors.)" 
  CALL PrintAY(kEqu%, mCol%, BZ#())              'Print the input matrix: 
  PRINT #14, "--- Entering: kEquations <> nUnknowns ---" 
  PRINT #14, "" 
  PRINT #14, "             Coefficients: The Outputs " 
  PRINT #14, "Your input: [   [B]   :    [Z]    ]" 
  PRINT #14, "Will solve: [ [Bt*B]  :   [Bt*Z]  ]" 
  PRINT #14, "        as: [   [A]   :    [Y]    ]" 
  PRINT #14, "" 
  PRINT #14, "  yeilding: [   [Ai]  :    [X]    ]" 
  PRINT #14, "      i.e.:           :The Answers " 
  PRINT #14, "        ...a `least-squares best fit` of [Z]." 
  PRINT #14, "          : print: [Bp] = [Ai]*[Bt]" 
  PRINT #14, "      i.e.:   The pseudoinverse of [B]" 
  PRINT #14, "          : print: [Bp]*[B ] =I ?      and " 
  PRINT #14, "          : print: [B ]*[Bp]" 
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  DIM AY#(nUnk%, mCol%)        'Dimension [A:Y] ‘      PseudoInverse 
  FOR n% = 1 TO nUnk%                           '   Morph [A:Y] <- [B:Z] 
    FOR m% = 1 TO mCol%                         'in eight lines of BASIC code! 
      AY#(n%, m%) = 0# 
      FOR K% = 1 TO kEqu%                       '[A:Y]=[ [Bt]*[B] : [Bt]*[Z] ] 
        AY#(n%, m%) = AY#(n%, m%) + BZ#(K%, n%) * BZ#(K%, m%) 
      NEXT K% 
    NEXT m% 
  NEXT n%                                       ‘   … an elegant summary! 
 
  PRINT #14, "" 
  PRINT #14, "Matrix to be solved:  (note: [A] = [Bt]*[B] is symmetric)" 
  CALL PrintAY(nUnk%, mCol%, AY#()) 
  REM Call Gain2(nUnk%, mCol%) 
  DIM AiX#(nUnk%, mCol%)                      '-- Solve the equations: 
  FOR n% = 1 TO nUnk% 
    FOR m% = 1 TO mCol% 
      AiX#(n%, m%) = AY#(n%, m%)                 'Saves [A:Y] for use below. 
    NEXT m% 
  NEXT n% 
  CALL OverWriter(nUnk%, mCol%, AiX#())          'Solves [Ai:X] (<-[A:Y]) 
  REM Call DeGain2(nUnk%, mCol%) 
  REM PRINT #14, "*** 'MUse.exe' - Solution: ***" 
  REM CALL PrintAY(nUnk%, mCol%, AY#()) 
 
  IF (LOut% > 0) THEN                            'Evaluate the accuracy: 
    iAX1BZ2% = 2 
    CALL ErrorEval(kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%) 
  END IF '(LOut% > 0) 
 
  REM ------ 
  PRINT #14, "Computing the pseudoinverse: [Bp]=" 
  DIM Bp#(nUnk%, kEqu%) 
  PRINT #14, "Unknown    "; 
  FOR K% = 1 TO kEqu% 
    PRINT #14, USING "   Eqn:##    "; K%; 
  NEXT K% 
  PRINT #14, "" 
 
  FOR n% = 1 TO nUnk%                            '[Bp] = ([Bt]*[B])i * [Bt] 
    PRINT #14, USING "####   "; n%; 
    FOR K% = 1 TO kEqu% 
      Bp#(n%, K%) = 0# 
      FOR nm% = 1 TO nUnk% 
        Bp#(n%, K%) = Bp#(n%, K%) + AiX#(n%, nm%) * BZ#(K%, nm%) 
      NEXT nm% 
      PRINT #14, USING "######.######"; Bp#(n%, K%); 
    NEXT K% 
    PRINT #14, "" 
  NEXT n% 
  PRINT #14, "" 
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  IF (kEqu% < nUnk%) THEN PRINT #14, "[Bp]*[B] = not [I]" 
  IF (kEqu% > nUnk%) THEN PRINT #14, "[Bp]*[B] = [I] ?" 
  DIM BpB#(nUnk%, nUnk2%) 
  FOR n% = 1 TO nUnk%                            '[BpB]=[Bp]*[B] 
    FOR m% = 1 TO nUnk% 
      FOR K% = 1 TO kEqu% 
        BpB#(n%, m%) = BpB#(n%, m%) + Bp#(n%, K%) * BZ#(K%, m%) 
      NEXT K% 
    NEXT m% 
  NEXT n% 
  CALL PrintAY(nUnk%, nUnk2%, BpB#()) 
  ERASE BpB# 
  PRINT #14, "" 
 
  IF (kEqu% > nUnk%) THEN PRINT #14, "[B]*[Bp] = not [I]" 
  IF (kEqu% < nUnk%) THEN PRINT #14, "[B]*[Bp] = [I] ?" 
  DIM BBp#(kEqu%, kEqu2%) 
  FOR K% = 1 TO kEqu%                            '[BBp]=[B]*[Bp] 
    FOR k2% = 1 TO kEqu% 
      FOR nm% = 1 TO nUnk% 
        BBp#(K%, k2%) = BBp#(K%, k2%) + BZ#(K%, nm%) * Bp#(nm%, k2%) 
      NEXT nm% 
    NEXT k2% 
  NEXT K% 
  CALL PrintAY(kEqu%, kEqu2%, BBp#()) 
  ERASE BBp# 
 
  ERASE BZ# 
  ERASE AY# 
  ERASE Bp# 
 
  PRINT #14, "--- Exiting:  kEquations <> nUnknowns ---" 
END IF 
 
PRINT #14, "" 
PRINT #14, USING "Done: & & - closing MUSEOUT.TXT"; DATE$; TIME$ 
PRINT "Closing file 'MUSEOUT.TXT'." 
PRINT USING "Done: & &            Press escape."; DATE$; TIME$ 
CLOSE #14 
END 'Program MUse.exe - subroutines follow: 
 
REM --------------------------------------------------------------------------- 
SUB ErrorEval (kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%) 
  SHARED AiX#() 
  SHARED AY#() 
  SHARED BZ#() 
 
  PRINT #14, "--- Entering Subroutine ErrorEval(): ---" 
  PRINT #14, "" 
  PRINT #14, "*** Answers & Error evaluation: ***" 
  FOR L% = 1 TO LOut% 
    PRINT #14, USING "Answers for column ##:"; L% 
    FOR n% = 1 TO nUnk% 
      PRINT #14, USING "Unknown###="; n%; 
      PRINT #14, USING " #########.############"; AiX#(n%, nUnk% + L%); 
      PRINT #14, USING " = ##.############^^^^^"; AiX#(n%, nUnk% + L%) 
    NEXT n% 
    PRINT #14, "" 
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    PRINT #14, USING "Error evaluation for column ##:"; L% 
    PRINT #14, "Equation:    Ycomputed  -       Yin      =       Yerror" 
    RMS# = 0# 
    AbsMax# = 0# 
    nAbsMax% = 0 
    FOR K% = 1 TO kEqu% 
      PRINT #14, USING "####:"; K%; 
      FitValue# = 0# 
      FOR n% = 1 TO nUnk% 
        SELECT CASE (iAX1BZ2%) 
         CASE IS = 1  'kEquations =  nUnknowns 
          FitValue# = FitValue# + AY#(K%, n%) * AiX#(n%, nUnk% + L%) 
         CASE IS = 2  'kEquations <> nUnknowns 
          FitValue# = FitValue# + BZ#(K%, n%) * AiX#(n%, nUnk% + L%) 
        END SELECT 
      NEXT n% 
      PRINT #14, USING "  ######.#########"; FitValue#; 
      SELECT CASE (iAX1BZ2%) 
       CASE IS = 1    'kEquations =  nUnknowns 
        PRINT #14, USING "  ######.#########"; AY#(K%, nUnk% + L%); 
        FitValue# = FitValue# - AY#(K%, nUnk% + L%) 
       CASE IS = 2    'kEquations <> nUnknowns 
        PRINT #14, USING "  ######.#########"; BZ#(K%, nUnk% + L%); 
        FitValue# = FitValue# - BZ#(K%, nUnk% + L%) 
      END SELECT 
      PRINT #14, USING "  ######.#########"; FitValue#; 
      PRINT #14, USING " = ##.#########^^^^^"; FitValue# 
      IF ABS(AbsMax#) < ABS(FitValue#) THEN 
        AbsMax# = FitValue# 
        nAbsMax% = K% 
      END IF 
      RMS# = RMS# + FitValue# * FitValue# 
    NEXT K% 
    RMS# = SQR(RMS# / kEqu%) 
    PRINT #14, "" 
    PRINT #14, "                             "; 
    PRINT #14, USING "RMS   error=  ######.#########"; RMS#; 
    PRINT #14, USING " = ##.#########^^^^^"; RMS# 
    IF nAbsMax% > 0 THEN 
      PRINT #14, USING "####:                       "; nAbsMax%; 
      PRINT #14, USING "AbsMax error=  ######.#########"; AbsMax#; 
      PRINT #14, USING " = ##.#########^^^^^"; AbsMax# 
    END IF 
    PRINT #14, "" 
  NEXT L% 
  PRINT #14, "--- Exiting  Subroutine ErrorEval(): ---" 
  PRINT #14, "" 
END SUB 'ErrorEval() 
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REM --------------------------------------------------------------------------- 
SUB OverWriter (nUnk%, mCol%, AY#())              '[A:Y]->[Ai:X] 
  PRINT #14, "--- Entering Subroutine OverWriter(): ---" 
  PRINT #14, "" 
  DIM nUsed%(nUnk%) 
  DIM mUsed%(nUnk%) 
  DIM SwapColumn#(nUnk%) 
  DIM SwapRow#(mCol%) 
  DIM Asto#(nUnk%, nUnk%) 'Copy of [A] for evaluating [Ai]*[A], etc. 
 
  nUnk2% = nUnk%                                 'avoids "variable ailiasing" 
                                                 '  in calls to subroutines. 
  PRINT #14, "Set the noise floor:" 
  ValMin# = ABS(AY#(1, 1)) 
  FOR n% = 1 TO nUnk% 
    nUsed%(n%) = -n% 
    mUsed%(n%) = -n% 
    FOR m% = 1 TO nUnk% 
      IF ValMin# < ABS(AY#(n%, m%)) THEN 
        ValMin# = ABS(AY#(n%, m%)) 
      END IF 
    NEXT m% 
    FOR n2% = 1 TO nUnk%                         'Copy [Asto] <- [A] 
      Asto#(n%, n2%) = AY#(n%, n2%) 
    NEXT n2% 
  NEXT n% 
  ValMin# = ValMin# / 100000000# 
  PRINT #14, USING "ValMin=######.###############"; ValMin# 
  PRINT #14, "" 
 
  DetProduct# = 1# 
 
  FOR NextRowNom% = 1 TO nUnk%         'Solving isn`t necessarily sequential. 
    PRINT #14, "   *** Top of the Loop: Iteration "; 
    PRINT #14, USING "##:"; NextRowNom%; 
    PRINT #14, " ***" 
    CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
    REM Find the largest unused coefficient: 
    ValMax# = ValMin# 
    nRowMax% = 0 
    mColMax% = 0 
    FOR nRowTest% = 1 TO nUnk% 
      IF (nUsed%(nRowTest%) < 0) THEN 
        FOR mColTest% = 1 TO nUnk% 
          IF (mUsed%(mColTest%) < 0) THEN 
            IF ABS(AY#(nRowTest%, mColTest%)) > ABS(ValMax#) THEN 
              ValMax# = AY#(nRowTest%, mColTest%) 
              nRowMax% = nRowTest% 
              mColMax% = mColTest% 
            END IF 
          END IF '(mUsed%(mColTest%)<0) 
        NEXT mColTest% 
      END IF '(nUsed%(nRowTest%)<0) 
    NEXT nRowTest% 
    IF (nRowMax% = 0) THEN 
      PRINT "The input equations are linearly dependent." 
      PRINT #14, "The input equations are linearly dependent." 
      PRINT #14, "  Negative indices indicate dependent rows & columns." 
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      PRINT #14, "Overwriter inverse zero-ing uses the negative indices." 
      PRINT #14, "Salvaging a linearly-independent subset of [Ai] as [Ad]:" 
      FOR n% = 1 TO nUnk% 
        IF (nUsed%(n%) < 0) THEN 
          FOR m% = 1 TO mCol%    '...eliminating linearly dependent rows 
            AY#(n%, m%) = 0# 
          NEXT m% 
        END IF '(nUsed%(n%)<0) 
        IF (mUsed%(n%) < 0) THEN 
          FOR n2% = 1 TO nUnk%   '...eliminating linearly dependent columns 
            AY#(n2%, n%) = 0# 
          NEXT n2% 
        END IF '(mUsed%(n%)<0) 
      NEXT n% 
      CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
      GOTO 90 
    END IF '(nRowMax%=0) 
 
    PRINT #14, USING "The abs(max)=     #######.####"; ValMax#; 
    PRINT #14, USING " at  n=##,  m=##"; nRowMax%; mColMax% 
    DetProduct# = DetProduct# * ValMax# 
    iRank% = NextRowNom% 
    PRINT #14, USING "Det.Product =############.######"; DetProduct# 
 
    NextRow% = mColMax%                          'This is the row to be used. 
    nUsed%(nRowMax%) = -nUsed%(nRowMax%) 
    mUsed%(mColMax%) = -mUsed%(mColMax%) 
    nVarsUsed = NextRowNom% 
    nPivot% = mUsed%(mColMax%)         '<- Overwritten row. 
    mPivot% = nUsed%(nRowMax%)         '<- Overwritten column. 
    IF (ValMax# <> 1#) THEN 
      PRINT #14, USING "Divide row ## by ########.####:"; nRowMax%; ValMax# 
      FOR m% = 1 TO mCol% 
         AY#(nRowMax%, m%) = AY#(nRowMax%, m%) / ValMax# 
      NEXT m% 
      CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
     ELSE 
      PRINT #14, "No division needed - step skipped." 
      PRINT #14, "" 
    END IF '(ValMax#<>1#) 
 
    IF (nRowMax% <> nPivot%) THEN 
      PRINT #14, USING "Swap row ##  with row ##:"; nRowMax%; nPivot% 
      FOR m% = 1 TO mCol% 
         A1# = AY#(nRowMax%, m%) 
               AY#(nRowMax%, m%) = AY#(nPivot%, m%) 
                                   AY#(nPivot%, m%) = A1# 
      NEXT m% 
      n% = nUsed%(nRowMax%) 
           nUsed%(nRowMax%) = nUsed%(nPivot%) 
                              nUsed%(nPivot%) = n% 
      REM PRINT #14, "nUsed%=", nUsed%(1), nUsed%(2), nUsed%(3) 
      CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
     ELSE 
      PRINT #14, "No  row   swapping needed - step skipped." 
    END IF '(nRowMax%<>nPivot%) 
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    IF (mColMax% <> mPivot%) THEN 
      PRINT #14, USING "Swap column ##  with column ##:"; mColMax%; mPivot% 
      FOR n% = 1 TO nUnk% 
        SwapColumn#(n%) = AY#(n%, mColMax%) 
                          AY#(n%, mColMax%) = AY#(n%, mPivot%) 
                                             AY#(n%, mPivot%) = SwapColumn#(n%) 
      NEXT n% 
      m% = mUsed%(mColMax%) 
           mUsed%(mColMax%) = mUsed%(mPivot%) 
                              mUsed%(mPivot%) = m% 
      REM PRINT #14, "mUsed%=", mUsed%(1), mUsed%(2), mUsed%(3) 
      CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
    END IF '(mColMax%<>mPivot%) 
 
    REM eliminate the projected components from all the other equations: 
    PRINT #14, "" 
    PRINT #14, USING "Subtract iPivot row ## from the other rows"; nPivot%; 
    PRINT #14, " using a multiplier:" 
    FOR m% = 1 TO mCol% 
      SwapRow#(m%) = AY#(nPivot%, m%) 
    NEXT m% 
    FOR n% = 1 TO nUnk%                     'Clear the space for the overwrite: 
      SwapColumn#(n%) = AY#(n%, mPivot%) 
    NEXT n% 
    FOR n% = 1 TO nUnk% 
      IF (n% <> nPivot%) THEN 
        PRINT #14, USING "Reduce   row ## "; n%; 
        PRINT #14, USING " using multiplier #####.####: "; SwapColumn#(n%) 
        FOR m% = 1 TO mCol% 
           AY#(n%, m%) = AY#(n%, m%) - SwapColumn#(n%) * SwapRow#(m%) 
        NEXT m% 
        CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
      END IF '(n%<>nPivot%) 
    NEXT n% 
    PRINT #14, USING "and OverWrite the inverse in column ## "; mPivot% 
    FOR n% = 1 TO nUnk% 
      AY#(n%, mPivot%) = AY#(n%, mPivot%) - SwapColumn#(n%) / ValMax# 
    NEXT n% 
    AY#(nPivot%, mPivot%) = 1# / ValMax# 
    PRINT #14, "  [A:Y] becomes:" 
    CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
  NEXT NextRowNom% 
 
90 PRINT #14, "*** Solver's results: ***" 
  PRINT #14, USING "Determinant =############.######"; DetProduct# 
  PRINT #14, USING "       Rank =############"; iRank% 
  CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%()) 
 
  PRINT #14, "OverWriter Check: [Ai]*[A] = [I] ?" 
  DIM AAi#(nUnk%, nUnk2%) 
  FOR n% = 1 TO nUnk%                            '[AiA]= [A]*[Asto] 
    FOR m% = 1 TO nUnk% 
      FOR nm% = 1 TO nUnk% 
        AAi#(n%, m%) = AAi#(n%, m%) + AY#(n%, nm%) * Asto#(nm%, m%) 
      NEXT nm% 
    NEXT m% 
  NEXT n% 
  CALL PrintowAY(nUnk%, nUnk2%, AAi#(), nUsed%(), mUsed%()) 
  ERASE AAi# 
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  PRINT #14, "" 
  PRINT #14, "OverWriter Check: [A]*[Ai] = [I] ?" 
  DIM AiA#(nUnk%, nUnk2%) 
  FOR n% = 1 TO nUnk%                            '[AAi]= [Asto]*[A] 
    FOR m% = 1 TO nUnk% 
      FOR nm% = 1 TO nUnk% 
        AiA#(n%, m%) = AiA#(n%, m%) + Asto#(n%, nm%) * AY#(nm%, m%) 
      NEXT nm% 
    NEXT m% 
  NEXT n% 
 
  CALL PrintowAY(nUnk%, nUnk2%, AiA#(), nUsed%(), mUsed%()) 
  ERASE AiA# 
 
  ERASE nUsed% 
  ERASE mUsed% 
  ERASE SwapColumn# 
  ERASE SwapRow# 
  ERASE Asto# 
  PRINT #14, "--- Exiting  Subroutine OverWriter(): ---" 
  PRINT #14, "" 
END SUB 'OverWriter() 
 
REM --------------------------------------------------------------------------- 
SUB PrintAY (nRows%, mCols%, AYsee#()) 
  PRINT #14, "    "; 
  FOR n% = 1 TO nRows% 
    IF (n% <= mCols%) THEN PRINT #14, USING "######       "; n%; 
  NEXT n% 
  PRINT #14, " " 
  FOR n% = 1 TO nRows% 
    PRINT #14, USING "###"; n%; 
    FOR m% = 1 TO mCols% 
      PRINT #14, USING "######.######"; AYsee#(n%, m%); 
    NEXT m% 
    PRINT #14, "" 
  NEXT n% 
  PRINT #14, "" 
END SUB 'PrintAY() 
 
REM --------------------------------------------------------------------------- 
SUB PrintowAY (nRows%, mCols%, AYsee#(), nUsed%(), mUsed%()) 
  PRINT #14, "    "; 
  FOR m% = 1 TO nRows% 
    IF (m% <= mCols%) THEN PRINT #14, USING "######       "; mUsed%(m%); 
  NEXT m% 
  PRINT #14, " " 
  FOR n% = 1 TO nRows% 
    PRINT #14, USING "###"; nUsed%(n%); 
    FOR m% = 1 TO mCols% 
      PRINT #14, USING "######.######"; AYsee#(n%, m%); 
    NEXT m% 
    PRINT #14, "" 
  NEXT n% 
  PRINT #14, "" 
END SUB 'PrintowAY() 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

End of Appendix B: Matrix Solver Details 
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                                             Appendix C: Hat.exe - Use 
  Limited to A Matrix-based Polynomial Solver  for now. 

 
http://ftp.setterholm.com/PseudoInverse/AppendixC  includes: 
 
08/29/2011 11:42 AM  586,240 HAT.exe       - the program. 
 
08/29/2011 11:03 AM    5,823 HatIn.csv     - the input. 
        Look at ‘HatIn.csv’ in an ASCII text editor to get a sense of how input datasets are organized. 
        Hat.exe reads only your first (top) dataset in  HatIn.csv. 
 
08/29/2011 11:42 AM   30,007 HatReport.txt – the detailed output. 
      ‘HatReport.txt’ provides a good example of what ‘Hat.exe’ can do in the blink of an eye.  
 
08/29/2011 11:42 AM    1,989 HatOut.csv    - reorders input data 
        Look at ‘HatOut.csv’ in a spreadsheet program. 
 
08/29/2011 09:49 AM      225 _Run-Hat.bat   
   For use by DOS-literate people. Launches the program 
     & follows up by displaying HatReport.txt in the screen window. 
 

The opening disclaimers of “HAT.exe” version 0.40  –  is an unpleasant read: 
 

   HAT.exe is an experimental piece of scientific software. 
    > A sample`HatIn.csv`file was available with this software. 
      with several datasets therein. 
 
    > Presently, ONLY POLYNOMIAL-BASED SOLVING IS ACCESSIBLE. 
      `HatReport.txt` has the useful results. 
      `HatOut.csv` is for-now only useful for re-ordering data. 
 
       Use `MUse.exe` for non-poly problems (See Appendix B). 
 
      HAT reads only the first (topmost) dataset. 
    > The manner in which the software might respond to errors 
      in your `HatIn.csv` input file is unknown. 
    > The program was created on an AMD Athlon 64 processor in 
      a Windows XP environment using Absoft`s ProFortran 9.0. 
      Whether or not this program will run properly on your 
      particular computer is unknown to me. 
    > Although not intentional on my part, there may be errors 
      in the computational results. 
 
    >            THIS PROGRAM IS POSTED ON THE WEB 
            WITHOUT GUARANTEES OR WARRANTIES OF ANY KIND, 
                   including, but not limited to, 
                 fitness for any particular purpose. 
 
    > If YOU ACCEPT ALL THE RISK(S) of running the program: 
                 type A to accept the risk(s) and continue. 
      Otherwise, type Q to  quit. : 
 

End of Appendix C: Hat.exe - Use 
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Appendix P: Philosophy 
Entry #1:    (Referenced on page 9) 
Without a hyper-dimensional way of understanding how “unknowns” relate to “observations”, it’s easy 
to be close-to-clueless about how “real world” problems might be solved. Science, Math, and 
Engineering education & experience have produced people who, by intense focus in understanding their 
disciplines, were/are profoundly capable problem solvers. If the world’s social problems are going to be 
solved peacefully, then humanity needs people who are intensely focused problem solvers within the 
various social disciplines...“Your mission – should you choose to accept it – “. 

Trusting the invisible mental gears of “the next politician” will not take the world to social harmony. 
We need transparent governance decision models. Living under a tyrant, 10 years can seem like an 
eternity – if you’re lucky enough to survive. Solve problems now, while you have a chance, or pay for 
not solving them  later. Allowing me some poetic license: “There are only two kinds of people: 
Engineers  & Victims.” HAT lies at the beginning of a path to learning how to  create transparent 
governance decision models which may benefit almost everyone. 

Somebody – anybody – anywhere in the world - please go for it! 
 
Entry #2:    (Referenced on page 24) 
On the social side, I consider it likely that pseudoinverse system analysis will be part of the 
analytical mix that creates transparent governance models, helping in innumerable ways, 
including: 
 

1. By the comparatively simple and robust access that it offers for exploring parameter 
identifications in high-dimensional non-linear problem spaces.  
  

2. By de-mystifying the very idea of being able to find accurate answers in hyperspaces. Citizens 
the world over may begin to expect, if not demand, that presently-funded experts begin to provide stable, 
long-term solutions to the governance problems that are theirs to solve, particularly solutions to the 
social problems that have plagued humanity for hundreds of years. Trusting the invisible mental gears 
of “the next politician” has not and never will take the world to enduring social harmony. Let’s try 
to create transparent governance decision models. Maybe the models won’t work either, but an old 
Army manual characterized plans in a thoughtful way:  
 

“A bad plan is better than no plan.” 
 

3. By recognizing that every family in America is a “special interest group” which should have an 
equal amount of weight in the search for balanced congressional “answers”.  “The average 
American family” is falling apart before our very eyes; do the majority of our mentally-unaided 
politicians even dare to care? For the time being: greed rules at the national level, eh? 

The idea of “a transparent ethical compass” that works in hyperspace has allure. 
 

4. The corruption of human minds by wealth & power is a commonly recognized pitfall; 
trusting “invisible mental gears” as “leadership mechanisms” = a bad plan. “Evolving 
transparent mitigations of human pitfalls” is a grand vision. 
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5. An integral part of achieving transparent governance involves arriving at a shared 
comprehension of the rules that constrain and empower us – i.e. our Laws. Bright and 
ambitious young Americans have been drawn to the rules like a professional magnet for 
scores of years, but a significant fraction of lawyers resemble loose cannons rolling 
around the deck of a ship, contributing – in a major way – to financial uncertainties and 
financial losses for the rest of society. There’s no good reason why “a nation’s rules” 
should be the foundation of widespread parasitic professional conduct.  
 

6. More dimensions are involved in the tradeoffs of governance decisions than any one 
mind can intuitively harmonize. Hyperspace math, in various forms, will aid our shared 
discernment. This document is a piece of the puzzle. As one example of other various 
forms of high-dimensional mathematics: Linear Programming is a mathematical tool 
used to efficiently allocate manufacturing resources within an enterprise.(See Wikipedia.) 
 

7. Both eloquent and “invisible” intentions led to the American Civil War in 1861; the 
speeches and writings of Thomas Jefferson, America’s third President, come to mind. 
Jefferson was the philosophical guiding light of the Confederacy during the war, but, 
none-the-less, the Jefferson Memorial in Washington D.C. stands as a national monument 
to his eloquence and influence.  Even after giving our third President the benefit of the 
doubt - that he meant well - if there need be proof  that “great speeches”, and/or 
“great politicians” are a suspect means of assuring social harmony, Thomas 
Jefferson’s example provides the proof. Adolf Hitler also delivered “great speeches” in 
his day, but events subsequently revealed Hitler’s “invisible” intentions, which 
harmed/killed millions of people.  
 

8. Years ago someone concluded that: ‘The purpose of companies is to utilize people’s 
strengths and make their weaknesses irrelevant.’  
 

Here’s a candidate statement of purpose: 
“The purpose of transparent governance is to provide a shared & predictable 
political framework within which individuals and organizations can plan for the 
future, and to instruct our political leaders in how our society presently functions.” 
 

It remains to be seen whether or not transparent governance can be achieved. 
Deciding clearly: “What is us.” and “What is not us.” will be difficult. 

In systems with many dimensions, gems are the neighbors of noise. 
It’s no wonder that “invisible mental gears” are so challenged by reality. 

 
-------- 

End of Appendix P: Philosophy 
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“A First Course in Linear Algebra” by Daniel Zelinsky, Academic Press, 1973. 
This is an ideal textbook for people who prefer to learn math using intuition and examples. 
 

The Flight Simulation Engineers at McDonnell Douglas, St. Louis (1976-1978).  
Within the simulation group, extremely efficient codes for solving problems 20 times a second were the-
order-of-the-day; everyone helped everyone else become more skilled at efficient problem solving. 
Within that talented group of people, there seemed to be no lower limit on how compact source codes 
could become, and there seemed to be no lower limit on how quickly a given problem could be solved… 
when given further thought. 
 

Honeywell’s Systems & Research (S&RC), Minneapolis (1978-1984). 
             (at Ridgway Parkway) 
Honeywell had a building full of multi-disciplinary experts who were as collegial as the flight 
simulation engineers at McDonnell Douglas. Within S&RC, Dr. Gunter Stein taught me that: 

[A]-P= ( [A]T
* [A] )-1

* [A]T 

I knew, the instant that Gunter wrote down the equation, that my professional life had just experienced a 
major empowerment. (I had seen pseudoinverse being used in a very simple control system solution at 
McDonnell Douglas, but hadn’t begun to grasp the scope of the subject.) 
 

Absoft Corporation’s ProFortran 9.0 & William Mitchell’s F90GL. 
For the last seven years I’ve programmed using Absoft’s version 9.0 Fortran compiler and the OpenGL 
(graphics) interface to Fortran provided by Dr.William Mitchell of NIST. The stability of the 
programming environment and the power of the graphics are a marvel. Bravo. 
 

~Apologies: 
1. I haven’t been trained as a teacher, so knowing “how to teach” isn’t my specialty. I suggest, 
however, that teaching can be parsed into two subsets: “How to Teach” and “What to Teach”. 
Consider this paper an exposition on “What to Teach” to empower bright 9th graders to progress into 
hyperspace analytics. I invite anyone to figure out “how to teach” the material; I would enjoy the 
opportunity to help with the task. (The source codes and examples in Appendices A and B reveal the 
mechanics of the computations described on pages one through nine of this document.) 
 
2. Pseudoinverse System Analysis isn’t part of HAT because I’m not aware of how to exercise an 
(your) externally-defined system simulation model – efficiently - from within “HAT.exe” 
 
3. Almost no visualizations are included in this paper, despite having created quite a few (each of 
which made little intuitive sense to me). In general, many real problems naturally lend themselves to 
visualizations - demonstration of results in a visual context. Visualizations easily access intuition, 
whereas numbers alone are, at best, more narrowly intuitive. Strive to have a personal programming 
environment that allows you to code your own powerful algorithms and to create your own first-
rate 3-D (stereo) dynamic graphic visualizations . Visually-based analytical exploration is a hoot! 
“Homogeneous Transforms” (4x4 matrices with special properties) are the key to understanding the math of 
perspective & 3-D visualization, because you can then efficiently do projection; This is yet another example of 
brilliant results produced by scientists whose names may be unfamiliar to you. Expanding homogeneous 
transforms into hyperspace is likely to be fruitful; e.g.: with some thought, 4-D spaces can probably be projected 
at will onto 3-D subspaces for stereo viewing. 
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Employment sought: 
 

I’m an unemployed STEM professional looking for paid work –  working for everyone 
in the meantime, at my own expense… simplifying technical understandings to their 
essentials and providing thoughtful alternatives to “how we do business”.   Patents - ref:  
www.uspto.gov  - advanced search: IN/Setterholm-Jeffrey-M 
 

My contact information: 
Jeffrey M. Setterholm 

8095 230th St. E. 
Lakeville, Minnesota 55044-8287 

USA 
----- 

This document has a wealth of insights about “what to teach” 
to mathematically empower analytically-inclined young people. 

 

“How to teach” these insights is now the greater challenge. 
----- 
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