
Hyperspace Algebra Tools version 0.50 Page 1 of 54 September 14th, 2011

 The Philosophy Works®
 Lakeville, Minnesota, USA

Hyperspace Algebra Tools
(a.k.a.: “HAT”)

 “Be hip: find perp.” …see page two

http://ftp.setterholm.com/PseudoInverse/Hat.pdf

Save as: “Hat050.pdf” - version 0.50
Supersedes: August 30th 2011 version 0.40; Originated: August 3rd 2011

HAT.exe is intended to run on ‘Windows’ operating systems.
Data input is via “comma separated values” .csv files

which spreadsheets generate.

September 14th, 2011

Jeff Setterholm
Systems Engineer

Solve for A, B, & C in the example algebra problem: Output#1 Hints:
 Equation#1: 1.00 * A + 0.20 * B + 0.30 * C = 1.10 A = 1.0
 Equation#2: 0.30 * A + 1.00 * B + 0.10 * C = 2.20 B = 2.0
 Equation#3: 0.10 * A + 0.20 * B + 1.00 * C = -0.50 C = -1.0

This problem has: three equations: (K=3)
 with one output: (L=1)
 in three unknowns: A,B,& C (N=3)

HAT is a software tool for people (who already know Algebra 1) to begin solving:

 K-equations, with
 L-outputs, in
 N-unknowns … for K >=N

(i.e. real-world algebra problems.).

For arbitrary problems with more than four-equations in four-unknowns, it’s a waste of time to use
pencil & paper to arrive at accurate numerical solutions, whereas computers can do the legwork in the
blink of an eye… once the equations are inside the computer in a well-structured way.

This tool is “a well-structured & automated way”
of having your computer solve

K-equations with L-outputs in N-unknowns.

This tool supports solving problems with many-more-than-three unknowns. Each unknown creates/adds
another “dimension” to the “space” in which the problem will be understood and solved; hence having
more than three unknowns …more than “a 3-D problem”… creates a “hyperspace” (i.e.:>3-D). These
algorithms work in hyperspace as well as within the familiar territory of “Algebra 1 land”.

Hyperspace Algebra Tools version 0.50 Page 2 of 54 September 14th, 2011

This tool is based on the subject: linear algebra; if you liked Algebra 1 and were good at it, you may be
amazed by the empowerments that linear algebra provides… I’m still amazed, after 35 years of using
linear algebra to solve complex applied mathematics problems.

You’ve probably watched enough science fiction videos to believe that: hyperspace can be an extremely
complicated place. Even within introductory linear algebra, there are theoretical results whose simple 3-
D examples defeat my intuition. HAT provides you with a carefully chosen, powerful, & relatively
simple path through a complicated forest. So: mastering HAT will leave you far from being “an expert
at linear algebra” – but you’ll be analytically empowered in some marvelous ways.

“Matrix Inversion” is the key piece; here’s a look at a matrix inverter’s results for the example :

The coefficients of the three equations go into the matrix inverter, and three scaled perpendicular
directions come out as “answers”. Perpendicular to what? … in each case, perpendicular to the
coefficients of the other two equations. These scaled directions are entirely independent of what the
outputs are equal to; far more powerfully – these three “perpendiculars” provide all the solutions for
all the outputs that the three equations might be equal to. And matrix inversion works the same way
in hyperspace… only human intuition is challenged. Perhaps you’re starting to grasp why it might “be
hip to (be able to) find perp.” HAT does that, and more.

The way you solved equations in Algebra 1 took you half way down the road to computing inverses.
Here’s the output of a “BASIC” program that does the algebra; watch it go:

Hyperspace Algebra Tools version 0.50 Page 3 of 54 September 14th, 2011

|---------- algebra ---------|- linear algebra -|
Example1.Bas 2011.07.13 JMS
 # of equations # of unknowns # of outputs
 3 3 4
Equations: Reduce to Identity: Output#1: Append an identity matrix:
 1.000000 0.200000 0.300000 : 1.100000 1.000000 0.000000 0.000000
 0.300000 1.000000 0.100000 : 2.200000 0.000000 1.000000 0.000000
 0.100000 0.200000 1.000000 : -0.500000 0.000000 0.000000 1.000000
Row reductions “eliminate” one variable at a time (A, then B, then C):
End of step 1:
> 1.000000 0.200000 0.300000 : 1.100000 1.000000 0.000000 0.000000
 0.000000 0.940000 0.010000 : 1.870000 -0.300000 1.000000 0.000000
 0.000000 0.180000 0.970000 : -0.610000 -0.100000 0.000000 1.000000
End of step 2:
 1.000000 0.000000 0.297872 : 0.702128 1.063830 -0.212766 0.000000
> 0.000000 1.000000 0.010638 : 1.989362 -0.319149 1.063830 0.000000
 0.000000 0.000000 0.968085 : -0.968085 -0.042553 -0.191489 1.000000
End of step 3: Identity matrix: Answer#1: & Perp (The inverse) plops out:
 1.000000 0.000000 0.000000 A= 1.000000 1.076923 -0.153846 -0.307692
 0.000000 1.000000 0.000000 B= 2.000000 -0.318681 1.065934 -0.010989
> 0.000000 0.000000 1.000000 C= -1.000000 -0.043956 -0.197802 1.032967
Done. (visualized on page 2)

So, by simply appending an “identity matrix” as extra “output” columns (read more about the “identity
matrix” on the next page.), the algebraic solution process yields the full inverse matrix! Finding
perps in hyperspace is quite straightforward… but the process is tedious, error prone, boring, &
inefficient when done by hand (for all but simple problems).

My first three students had difficulty understanding how to replicate the algebra solution above, and my
guidance to them was unclear. Appendix A (pages 25-33) has the step-by-step introductory matrix
solver details & the solver’s BASIC source code; see the details there.

On the preceeding page I claimed that the inverse provides all the solutions. As an example: multiplying
the inverse matrix times the Output#1 vector yields the Answer#1 vector. As follows:

Names Answer#1 The inverse Output#1
 A= | 1.000000 | | 1.076923 -0.153846 -0.307692 | | 1.100000 |
 B= | 2.000000 | = |-0.318681 1.065934 -0.010989 | * | 2.200000 |
 C= |-1.000000 | |-0.043956 -0.197802 1.032967 | |-0.500000 |

& here’s the same multiply using symbols instead of numbers:

 Vector-out = Matrix#1 * Vector#2
(j*a + m*b + p*c)		j, m, p		a
(k*a + n*b + q*c)	=	k, n, q	*	b
(l*a + o*b + r*c)		l, o, r		c

You can easily check that the numeric & symbolic results agree.

Hyperspace Algebra Tools version 0.50 Page 4 of 54 September 14th, 2011

“Identity matrices” (=”I” or [I]) generalize “1.0” into hyperspace. I’s always have exactly as many
rows as columns, with 1.0’s along the diagonal and 0.0’s everywhere else. To understand more clearly,
consider that, in simple algebra: 1.0*X = X , multiplying by 1.0 doesn’t change the value of a number.
In the same way, multiplying by I doesn’t alter the hyperspace that you’re working in. I is a richer
concept than “1.0”; not only are values preserved, but the inter-dimensional relationships are all
preserved as well (up to the number of dimensions that I has). To aid your understanding, consider the
matrix multiplication [Ai]*[A]: [Ai] = the inverse of [A] = [A]-1.

 [I] = [Ai] * [A]
1.0 0.0 0.0		1.076923 -0.153846 -0.307692		1.00 0.20 0.30
0.0 1.0 0.0	=	-0.318681 1.065934 -0.010989	*	0.30 1.00 0.10
0.0 0.0 1.0		-0.043956 -0.197802 1.032967		0.10 0.20 1.00

& the same multiply using symbols instead of numbers…

 Matrix-out = Matrix#1 * Matrix #2
(j*a+m*b+p*c),(j*d+m*e+p*f),(j*g+m*h+p*i)		j, m, p		a, d, g
(k*a+n*b+q*c),(k*d+n*e+q*f),(k*g+n*h+q*i)	=	k, n, q	*	b, e, h
(l*a+o*b+r*c),(l*d+o*e+r*f),(l*g+o*h+r*i)		l, o, r		c, f, i

For any choice of output#’s or answer#’s, entire (hper)spaces are mapped back to themselves, in
both directions , up to the number of dimensions that the square matrix I has. Division by [A] is not
defined; multiplying by [Ai] is as close as you can get, and has much of the same flavor.

For this example problem (but not always true):
Output#1= [A]*Answer#1 & Answer#1= [Ai] *Output#1
Answer#1=[Ai]*[A]*Answer#1 & Output#1=[A]*[Ai]*Output#1
Answer#1= [I] *Answer#1 & Output#1= [I] *Output#1

The vector/matrix#1 (on the left) must have exactly as many columns as the vector/matrix#2 (on the
right) has rows; otherwise, the multiplication is undefined. The “answer” vector/matrix has the number
of rows of #1 and the number of columns of #2.
Let: Ntot = number of rows of #1
 NMtot = number of columns of #1 = number of rows of #2
 Mtot = number of columns of #2
The “Matrix & vector multiply” code can be written as:

Dim MatVecOut(Ntot, Mtot) <-This BASIC program does matrix multiplies.
Dim MatVec1(Ntot,NMtot) <- …and the values have been put in
Dim MatVec2(NMtot, Mtot) <- …and the values have been put in
For N=1 to Ntot
 For M=1 to Mtot
 MatVecOut(N,M)=0.
 For NM=1 to NMtot #1 #2
 MatVecOut(N,M)=MatVecOut(N,M)+MatVec1(N,NM)*MatVec2(NM,M)
 Next NM
 Next M
Next N

(If you’re looking for a computing environment to create your own hyperspace algebra tools , seek floating point numbers
with a mimimum of 64-bits. (~ 12 significant digits). HAT uses 128-bit floats (~24 significant digits) which is called “quad
precision” for a 32-bit operating system.)

Hyperspace Algebra Tools version 0.50 Page 5 of 54 September 14th, 2011

A computationally minor (but brilliant & vastly empowering) step beyond what I’ve just shown you is
the “matrix pseudoinverse” - another nifty twist on this primrose path through the complicated
forest of linear algebra which deals with having more equations than unknowns . Having more
equations than unknowns is quite common in real- life problems, and provides beneficial opportunities,
such as finding a “least-squares best fit” through many data points - which reduces the influence of
measurement noise on the solution values of the unknowns. But with more equations than unknowns,
[A] isn’t invertible by itself - because it’s not a square matrix.
Enter the magic of the pseudoinverse.

Appendix B (pages 34-47) has the source code for “MUse.bas/.exe, a matrix PseudoInverter,
OverWriter, & Linear Dependence eliminator. The output if MUse.exe is in “MUseOut.txt”; see the
appendix for more details. Systems with more or less equations than unknowns are referred to here as
[B:Z] inputs, which are morphed to [A:Y] prior to solving. Finding polynomial coefficients morphs
[B:Z] to -> [C:Z] to -> [A:Y]. [C] is often a non-square matrix.

Calling the non-square matrix of coefficients [B] instead of [A] , the pseudoinverse, denoted here
by [B] -P or [Bp]

[B]-P= ([B]T
* [B])-1

* [B]T

where [B]T = the transpose of [B]=[Bt],formed by interchanging the rows and columns of [B].

When I said a “computationally minor step”, I wasn’t kidding.
Forming the transpose is trivial; letting [Bt] = the transpose of [B] = [B]T , in BASIC:
Dim B[Ntot,Mtot) <-This BASIC program creates the transpose.
Dim Bt[Mtot,Ntot]
For N=1 to Ntot
 For M=1 to Mtot
 Bt(M,N)=B(N,M)
 Next M
Next N

The term “pseudoinverse” is somewhat confusing: the inversion is actually a regular inversion being
done to the square matrix [B]T

*[B]. Hence the “pseudo-” part is the brilliant data compression technique
associated with pre-forming [B]T

* [B] and then multiplying by [B]T after the inversion. Furthermore,
if you just “want the answers” rather than “the space of all the possible answers”, the inverting of
[B]T

*[B] is not necessary!

So, while it’s true that: Unknown#1 ≅ [B]-P * Output#1
 we’ll directly solve: ([B]T

* [B]) : [B]T
* * Output#1]) instead.

 which solves just like: [A : Y]

After that we’ll look at the numerical values of [B]-P, which are interesting in their own right if you want
to understand what the numbers inside these matrices represent.

Hyperspace Algebra Tools version 0.50 Page 6 of 54 September 14th, 2011

Letting: [A] = [B]T
* [B]

 and: Y = [B]T
* Output#1

 the system: [A]:Y row reduces to: [I] :~Answer#1 without inversion.
This core [A] has the dimensions by the unknowns irrespective of the number of equations.
Likewise, the system: [A]:Y:[Bt] row reduces to: [I] :~Answer#1: [B] -P

Let’s go right to a numerical example – five equations in three unknowns.
Adding two equations to the opening example (by exercising: 1.0*x+2.0*y-1.0*z=Output)

 A* B* C* Output#1 (=Z)
Eqn#1: 1.0 0.2 0.3 = 1.1
Eqn#2: 0.3 1.0 0.1 = 2.2
Eqn#3: 0.1 0.2 1.0 = -0.5
Eqn#4: -1.0 0.3 0.2 = -0.6 <- added
Eqn#5: 0.5 -1.0 -0.3 = -1.2 <- added

 [A] = [B]T

* [B] Y = [B]T
* Z

 2.35 -0.28 0.08 : 1.71
 -0.28 2.17 0.72 : 3.34
 0.08 0.72 1.23 : 0.29

Simple algebra 1 row reductions solve for Answer#1.

Row reductions:
Step 1:
 1.000000 -0.119149 0.034043 : 0.727660
 0.000000 2.136638 0.729532 : 3.543745
 0.000000 0.729532 1.227277 : 0.231787
Step 2:
 1.000000 0.000000 0.074725 : 0.925275
 0.000000 1.000000 0.341439 : 1.658561
 0.000000 0.000000 0.978186 : -0.978186
Step 3: [I] Answer#1
 1.000000 0.000000 0.000000 : 1.000000 = A
 0.000000 1.000000 0.000000 : 2.000000 = B
 0.000000 0.000000 1.000000 : -1.000000 = C
Done.

Inversion isn’t necessary in order to solve more equations than unknowns! Of course, we’re not finding
all the possible answers, only the particular Answer#1.

Where did Answer#1 come from? Understanding what the numbers in these matrices stand for may help
your intuitive grasp. When you study physics, you’ll learn about the units of numbers and variables,
which is the same idea.. For example, if you have an amount of money equal to 2, you don’t know how
much money that is until it has a unit associated with it, for example 2 dollars , or perhaps 2 cents.

Hyperspace Algebra Tools version 0.50 Page 7 of 54 September 14th, 2011

The units of the numbers inside the matrices are rates of change. Consider the equation of a straight line
on a 2-D graph, often written: Y=m*X+b where m is the slope of the line and b is the Y- intercept
of the line with the graph’s Y-axis.

 m is the rate of change of Y with respect to changes in the value of X.

In calculus, rates of change of outputs with respect to a single input are called “derivatives”; derivatives
are the local slopes; they’re “local” because, when lines are curved, the slopes change as the input value
moves along the curved line.

The two example problems have three “inputs”: A, B, & C, which I’ve referred to as “unknowns”. The
numbers which multiply A, B, & C are slopes of each output with respect to A, B, & C. Since there is
more than one input, there’s more than one dimension in which to have a slope, in fact there are three
slopes associated with each equation. Calculus calls these slopes “partial derivatives” because slopes
vary as the direction of measurement of slope varies. Hence:

The numbers inside [A] are numerical partial derivatives.

In algebra 1 as well, the equation coefficients are “numerical partial derivatives”.

Changes of notation will simplify and compact all that follows :
In the spirit of: Y=m*X+b,
 Single column case: Multiple column case:
 1. Unknowns will henceforth be an X vector & unknowns will be an [X] matrix
 2. Outputs will henceforth be a Y vector &, outputs will be a [Y] matrix.

So: X = Unknowns = Answer#1 ,and: Y = Outputs = Output#1
 X(1) = A = 1.0 Y(1) = 1.1
 X(2) = B = 2.0 Y(2) = 2.2
 X(3) = C = -1.0 Y(3) = -0.5

And the elements of [A] are identified by their location in the
matrix: [A]= | A(1,1) A(2,1) A(3,1) | A(n,m) where
 | A(1,2) A(2,2) A(3,2) | n =[1,2,or 3]
 | A(1,3) A(2,3) A(3,3) | m =[1,2,or 3]

After the changes of notation we can write: Y=[A]*X

[A]= | 1.000000 0.200000 0.300000 | & Output#1 = [A} * Unknown#1
 | 0.300000 1.000000 0.100000 | now written Y = [A] * X
 | 0.100000 0.200000 1.000000 |

The units of each matrix number are the units that go out to the left divided by the units that come in
from the right (~ from above) during a matrix multiply. .. which “has to be” because each number is a
slope in a particular direction. Assigning units to our first example is enlightening:

Hyperspace Algebra Tools version 0.50 Page 8 of 54 September 14th, 2011

The units of Y and X are usually suggested by the problem itself. Using the fanciful units:

 Y(1)=”widgets” X(1)=“person” “/” = the division symbol
 Y(2)=”mistakes” X(2)=”hour” = “per”
 Y(3)=”triumphs” X(3)=”dollar” …creates derivatives
 Y = [A] * X

Then the units of the partial derivatives within [A] become:
[A]= | (widgets/person) (widgets/hour) (widgets/dollar) |
 | (mistakes/person) (mistakes/hour) (mistakes/dollar) |
 | (triumphs/person) (triumphs/hour) (triumphs/dollar) |

The units must remain consistent during mathematical operations; consider multiplies:

Y(1) widgets = A(1,1) widgets/person * X(1) person
 + A(1,2) widgets/hour * X(2) hour
 + A(1,3) widgets/dollar * X(3) dollar

Both inverse and pseudoinverse matrices have units that are reciprocal and transposed with respect to
the original matrix. That way the resulting units also make sense within multiplies. Units are consistent
in linear algebra equations. Units offer an independent way to check equations for correctness.

The idea of “units” can be abstracted to the unspecified units of the symbols of the variables. So
the units of A(i,j) = the units of Y(i) / the units of X(j) and
the units of B(i,j) = the units of Z(i) / the units of X(j).

------ a digression ------
There’s a more compact way to compute and display matrix inversions. For the first example, draw X’s
through the (unnecessary) columns that have no unexpected information:

Hyperspace Algebra Tools version 0.50 Page 9 of 54 September 14th, 2011

Hence a matrix can overwrite itself in the course of being inverted; so input:
[A]: & Y:
 1.000000 0.200000 0.300000 : 1.100000
 0.300000 1.000000 0.100000 : 2.200000
 0.100000 0.200000 1.000000 : -0.500000
Goes directly to output:
[A]-1 & X:
 1.076923 -0.153846 -0.307692 : 1.000000
 -0.318681 1.065934 -0.010989 : 2.000000
 -0.043956 -0.197802 1.032967 : -1.000000
HAT’s inverter/solver is an overwriter. Appendix B has BASIC OverWriter source code.

Let’s compute the full pseudoinverse [B]-P of the five-equation example problem using:
 [B]-P=([B]T*[B])-1*[B]T

We already have: Transposing [B] and treating it is a [Y] matrix:
[A]=[B]T*[B]= & [Y]=[B]T=

2.35 -0.28 0.08	:	1.00 0.30 0.10 -1.00 0.50
-0.28 2.17 0.72	:	0.20 1.00 0.20 0.30 -1.00
0.08 0.72 1.23	:	0.30 0.10 1.00 0.20 -0.30

You can use the algorithm that solves the first example problem to find this pseudoinverse; here I’m
using the OverWriter because the notation is more compact:

 [Ai]= ([B]T

* [B])-1 = & [X]=[B]-P = The full pseudoinverse =

0.438 0.082 -0.076	:	0.431337 0.205574 -0.016233 -0.428608 0.160012
0.082 0.587 -0.349	:	0.094573 0.576854 -0.223428 0.024503 -0.441566
-0.076 -0.349 1.022	:	0.160488 -0.269741 0.944851 0.176135 0.004168

Does X ≅ [B]-P * Z? Yes.

1.000000		0.431337 0.205574 -0.016233 -0.428608 0.160012		1.10
2.000000	=	0.094573 0.576854 -0.223428 0.024503 -0.441566	*	2.20
-1.000000		0.160488 -0.269741 0.944851 0.176135 0.004168		-0.50
 |-0.60|
 |-1.20|
And the units of B-P(n,k) are: units of X(n) /units of Z(k)

Does[I] = [B]-P * [B]? Yes.

1.0 0.0 0.0		0.431337 0.205574 -0.016233 -0.428608 0.160012		1.00 0.20 0.30
0.0 1.0 0.0	=	0.094573 0.576854 -0.223428 0.024503 -0.441566	*	0.30 1.00 0.10
0.0 0.0 1.0		0.160488 -0.269741 0.944851 0.176135 0.004168		0.10 0.20 1.00
 |-1.00 0.30 0.20|
 | 0.50 -1.00 -0.30|
 In this problem: X =[B]-P*[B]*X=I*X
 And the units of I(n,m) are: ~(units of X(n) / units of Z(k)) *(units of Z(k) / units of X(n)) *
 (…for each k=1 to nEquations…)
 which exactly cancel, showing that [I] is unitless.
And in this example problem: Z =[B]*[B]-P *Z, however: I≠[B]*[B]-P

Hyperspace Algebra Tools version 0.50 Page 10 of 54 September 14th, 2011

 [B]*[B]-P=
| 0.498398 0.240022 0.222537 -0.370867 0.072949|
| 0.240022 0.611552 -0.133812 -0.086466 -0.393145|
| 0.222537 -0.133812 0.898542 0.138175 -0.068144|
|-0.370867 -0.086466 0.138175 0.471186 -0.291648|
| 0.072949 -0.393145 -0.068144 -0.291648 0.520321|

Here, Z is in a five-dimensional space, but two dimensions of information are lost in the multiply [B]T

*
[B], and that information cannot be recovered by subsequent multiplies back into a higher dimensional
space. Z ≅[B]*[B]-P *Z is a least squares best fit of Z onto the 3-D subspace of preserved
information. The example was chosen with Z already within the 3-D subspace. In the “real world”, the Z
values are often experimental measurements which have at- least tiny errors , often called “noise”,
associated with them. Introducing some reality, let Z(5)=-1.19 instead of = -1.20, and see what
happens. In subtle ways, the inputs and outputs are jostled:

Now X= whereas before X=
 | 1.001600| | 1.00|
 | 1.995584| | 2.00|
 |-0.999958| |-1.00|

 Z ≅ [B]*[B]-P * Z
1.100729		0.498398 0.240022 0.222537 -0.370867 0.072949		1.10
2.196069		0.240022 0.611552 -0.133812 -0.086466 -0.393145		2.20
-0.500681	≅	0.222537 -0.133812 0.898542 0.138175 -0.068144	*	-0.50
-0.602916		-0.370867 -0.086466 0.138175 0.471186 -0.291648		-0.60
-1.194797		0.072949 -0.393145 -0.068144 -0.291648 0.520321		-1.20

[A]-P has remained unchanged, because the coefficients of the equations, not the particular inputs or
outputs, define [A]-P.

Appendix P, Entry #1, page 49, suggests a useful social purpose which hyperspace mathematics will eventually serve.

So far, the example problems have had X as the first power of A, B, & C individually. Higher-order
polynomials offer a much-more-fruitful generic approach to finding equations to explain arbitrary
data. HAT least-squares-best-fit’s polynomial coefficients to your data. The understanding that the
matrix elements are numerical partial derivatives is the key to how polynomial fitting works. If you
want to determine 12 polynomial coefficients (=unknowns), you’ll need to have a minimum of 12 data-
points (=equations) to work with.
 Often, sensors are calibrated using polynomial fits; people want to know, in advance, how accurate the
output of a sensor will be when the sensor outputs emerge from the polynomial that adjusts the raw
sensor signals. Having five times more data-points than the expected number of polynomial
coefficients provides a comfortable margin for finding the actual “best fit”. The reason for having more
data-points than coefficients is that the solution will be an exact fit of the data when #Data-
points=#Coefficients – there is no error - but the resulting polynomial may be a very inaccurate
answer on either side of the datapoints. Having the coefficients best- fit the larger dataset smoothes out
the solution, and also provides a prediction how good the fit is likely to be for another arbitrary real
sensor output. Doing polynomial fits on real data without surplus data & error assessments is a formula
for disaster! The extra data also aids in finding and eliminating the occasional bad data-point, which also
helps yield more accurate calibrations.

Hyperspace Algebra Tools version 0.50 Page 11 of 54 September 14th, 2011

As an example of how multivariable polynomials are set-up, let’s exercise the examples’ underlying
equation 22 more times to generate a total of “27 datapoints” and then solve for the polynomial
coefficients which I’ll specify; you’ll see that the “numerical partial derivatives” of a multivariable
polynomial... have “almost-obvious” values once understood.

Exercising equation: A *X(1)+ B *X(2)+ C *X(3) = Z
 1.0*X(1)+2.0*X(2)-1.0*X(3) = Z
to synthesize more “datapoints”:
 # X(1) X(2) X(3): Z
 1 1.0 0.2 0.3 1.1 <same as before
 2 0.3 1.0 0.1 2.2 < “
 3 0.1 0.2 1.0 -0.5 < “
 4 -1.0 0.3 0.2 -0.6 < “
 5 0.5 -1.0 -0.3 -1.2 < “ (without the added noise)
 6 -1.00 0.00 2.00 -3.00 <adding 22 more “datapoints” (#6-#27)
 7 -1.00 0.50 -2.00 2.00
 8 -1.00 0.50 0.00 0.00
 9 -1.00 0.50 2.00 -2.00
 10 0.00 -0.50 -2.00 1.00
 11 0.00 -0.50 0.00 -1.00
 12 0.00 -0.50 2.00 -3.00
 13 0.00 0.00 -2.00 2.00
 14 0.00 0.00 0.00 0.00
 15 0.00 0.00 2.00 -2.00
 16 0.00 0.50 -2.00 3.00
 17 0.00 0.50 0.00 1.00
 18 0.00 0.50 2.00 -1.00
 19 1.00 -0.50 -2.00 2.00
 20 1.00 -0.50 0.00 0.00
 21 1.00 -0.50 2.00 -2.00
 22 1.00 0.00 -2.00 3.00
 23 1.00 0.00 0.00 1.00
 24 1.00 0.00 2.00 -1.00
 25 1.00 0.50 -2.00 4.00
 26 1.00 0.50 0.00 2.00
 27 1.00 0.50 2.00 0.00

The “Order” of a polynomial variable is the highest power of that variable in any
particular equation. The coefficient count is one larger than the order, because each
variable has a 0th power term as well. Here’s a multivariable polynomial that’s 2nd order
in X(1) and 1st order in X(2) and X(3), so there’ll be 12 coefficients – 3x2x2. Using
[C:Z] as the notation:

Hyperspace Algebra Tools version 0.50 Page 12 of 54 September 14th, 2011

[C:Z]=
X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3: Z
 ^0^0^0 ^1^0^0 ^2^0^0 ^0^1^0 ^1^1^0 ^2^1^0 ^0^0^1 ^1^0^1 ^2^0^1 ^0^1^1 ^1^1^1 ^2^1^1
 1 1. 1. 1. 0.2 0.2 0.2 0.3 0.3 0.3 0.06 0.06 0.06 1.1
 2 1. 0.3 0.09 1. 0.3 0.09 0.1 0.03 0. 9 0.1 0.03 0.009 2.2
 3 1. 0.1 0.01 0.2 0.02 0. 2 1. 0.1 0.01 0.2 0.02 0.002 -0.5
 4 1. -1. 1. 0.3 -0.3 0.3 0.2 -0.2 0.2 0.06 -0.06 0.06 -0.6
 5 1. 0.5 0.25 -1. -0.5 -0.25 -0.3 -0.15 -0.075 0.3 0.15 0.075 -1.2
 6 1. -1. 1. 0. 0. 0. 2. -2. 2. 0. 0. 0. -3.0
 7 1. -1. 1. 0.5 -0.5 0.5 -2. 2. -2. -1. 1. -1. 2.0
 8 1. -1. 1. 0.5 -0.5 0.5 0. 0. 0. 0. 0. 0. 0.0
 9 1. -1. 1. 0.5 -0.5 0.5 2. -2. 2. 1. -1. 1. -2.0
10 1. 0. 0. -0.5 0. 0. -2. 0. 0. 1. 0. 0. 1.0
11 1. 0. 0. -0.5 0. 0. 0. 0. 0. 0. 0. 0. -1.0
12 1. 0. 0. -0.5 0. 0. 2. 0. 0. -1. 0. 0. -3.0
13 1. 0. 0. 0. 0. 0. -2. 0. 0. 0. 0. 0. 2.0
14 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0
15 1. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. -2.0
16 1. 0. 0. 0.5 0. 0. -2. 0. 0. -1. 0. 0. 3.0
17 1. 0. 0. 0.5 0. 0. 0. 0. 0. 0. 0. 0. 1.0
18 1. 0. 0. 0.5 0. 0. 2. 0. 0. 1. 0. 0. -1.0
19 1. 1. 1. -0.5 -0.5 -0.5 -2. -2. -2. 1. 1. 1. 2.0
20 1. 1. 1. -0.5 -0.5 -0.5 0. 0. 0. 0. 0. 0. 0.0
21 1. 1. 1. -0.5 -0.5 -0.5 2. 2. 2. -1. -1. -1. -2.0
22 1. 1. 1. 0. 0. 0. -2. -2. -2. 0. 0. 0. 3.0
23 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0
24 1. 1. 1. 0. 0. 0. 2. 2. 2. 0. 0. 0. -1.0
25 1. 1. 1. 0.5 0.5 0.5 -2. -2. -2. -1. -1. -1. 4.0
26 1. 1. 1. 0.5 0.5 0.5 0. 0. 0. 0. 0. 0. 2.0
27 1. 1. 1. 0.5 0.5 0.5 2. 2. 2. 1. 1. 1. 0.0
 X(1)^1 X(2)^1 X(3)^1 Z
 These are exactly the same as the input data columns.

The symbol “̂ ” is used in Basic to indicate “to the power of” i.e. exponentiation; so:
 X(1)^2 = X(1)* X(1) = X(1)2

The other columns are likewise products of the powers of X(1)*X(2)*X(3) evaluated at each
datapoint. Consider the underlined entry for datapoint #3:
 X(1)^2 * X(2)^1 * X(3)^1 = 0.1^2 * 0.2^1 * 1.0^1
 = .01 * .2 * 1.0
 = .002
& [C:Z] solves just like [B:Z] , (i.e: [A:Y]=[[Ct] * [C] : [Ct] * Z] yielding twelve values:

The solved polynomial coefficients are:
 PolyCoeff: Powers:
 X1^ X2^ X3^
 1 0.0 0 0 0
 2 1.0 1 0 0 = 1.0*X(1)^1
 3 0.0 2 0 0
 4 2.0 0 1 0 = 2.0*X(2)^1
 5 0.0 1 1 0
 6 0.0 2 1 0
 7 -1.0 0 0 1 = -1.0*X(3)^1
 8 0.0 1 0 1
 9 0.0 2 0 1 The other coefficients are 0’s.
 10 0.0 0 1 1
 11 0.0 1 1 1
 12 0.0 2 1 1 = 0.0 * X(1)^2 * X(2)^1 * X(3)^1
 ^ ^ ^ …the powers of each coefficient are added for clarity.

Hyperspace Algebra Tools version 0.50 Page 13 of 54 September 14th, 2011

Putting the previous noise back in: Z(5) = - 1.19 & re-solving tweaks all the coefficients.

The polynomial coefficients become:
 PolyCoeff: Powers:
 X1^ X2^ X3^
 1 0.000418 0 0 0
 2 1.005937 1 0 0
 3 -0.006181 2 0 0
 4 1.999261 0 1 0
 5 -0.012926 1 1 0
 6 0.013015 2 1 0
 7 -1.000043 0 0 1
 8 -0.003022 1 0 1
 9 0.003048 2 0 1
 10 0.000214 0 1 1
 11 0.006061 1 1 1
 12 -0.006171 2 1 1

Prior to putting noise in the data, there was no error in this synthesized example. Now we can look at
the errors by exercising the resulting polynomial whose coefficients were just computed:

Exercising the polynomial: The errors:
 # Z:data Z:poly Z:poly-Z:data
 1 1.100000 1.100045 0.000045
 2 2.200000 2.198277 -0.001723
 3 -0.500000 -0.499593 0.000407
 4 -0.600000 -0.603655 -0.003655 <- max. error
 Y(5) -1.190000 -1.193462 -0.003462
 6 -3.000000 -2.999645 0.000355
 7 2.000000 2.000864 0.000864
 8 0.000000 0.000901 0.000901
 9 -2.000000 -1.999061 0.000939
 10 1.000000 1.001087 0.001087
 11 -1.000000 -0.999212 0.000788
 12 -3.000000 -2.999512 0.000488
 13 2.000000 2.000503 0.000503
 14 0.000000 0.000418 0.000418
 15 -2.000000 -1.999667 0.000333
 16 3.000000 2.999920 -0.000080
 17 1.000000 1.000048 0.000048
 18 -1.000000 -0.999823 0.000177
 19 2.000000 2.000636 0.000636
 20 0.000000 0.000499 0.000499
 21 -2.000000 -1.999637 0.000363
 22 3.000000 3.000207 0.000207
 23 1.000000 1.000174 0.000174
 24 -1.000000 -0.999859 0.000141
 25 4.000000 3.999777 -0.000223
 26 2.000000 1.999849 -0.000151
 27 0.000000 -0.000080 -0.000080

Appendix C page 48: Hat.exe – presently computes (only) polynomial-based solutions.

Hyperspace Algebra Tools version 0.50 Page 14 of 54 September 14th, 2011

Here’s how the input data for the example above looks inside a spreadsheet:

Export this file in a “comma separated value” (.csv) format as “HatIn.csv” for use by HAT.

Hyperspace Algebra Tools version 0.50 Page 15 of 54 September 14th, 2011

The result is awkward to read:
~,2011.07.27,Jeff Setterholm, Description|Date|Analyst
27,5,1,4, nDatRows|nCols|nColIndex|MaxOrder
 ,1,2,3,-1, >0=In`s|<0=Out`s|0=ignore
 ,2,1,1, , In`s: polynomial order
 index , X(1), X(2), X(3), Z, Column labels
1,1,0.2,0.3,1.1, <same as before
2,0.3,1,0.1,2.2," < """
3,0.1,0.2,1,-0.5," < """
4,-1,0.3,0.2,-0.6," < """
5,0.5,-1,-0.3,-1.19," < "" (noise included)"
6,-1,0,2,-3, <additional datapoints #6-#27
7,-1,0.5,-2,2,
8,-1,0.5,0,0,
9,-1,0.5,2,-2,
10,0,-0.5,-2,1,
11,0,-0.5,0,-1,
12,0,-0.5,2,-3
13,0,0,-2,2
14,0,0,0,0
15,0,0,2,-2
16,0,0.5,-2,3
17,0,0.5,0,1
18,0,0.5,2,-1
19,1,-0.5,-2,2
20,1,-0.5,0,0
21,1,-0.5,2,-2
22,1,0,-2,3
23,1,0,0,1
24,1,0,2,-1
25,1,0.5,-2,4
26,1,0.5,0,2
27,1,0.5,2,0
!////////////////////////////// End of Testcase ////////////////////////////7/9
The data above was synthesized by exercising:
 1.0*X(1)+2.0*X(2)-1.0*X(3) = Y
HAT can be used without using a spreadsheet to generate the “HatIn.csv” file. For example:
HatIn.csv,2011.07.27,Jeff Setterholm, Description|Date|Analyst
 27, 5, 1, 4, nDatRows|nCols|nColIndex|MaxOrder
 , 1 , 2 , 3 , -1 , >0=In`s|<0=Out`s|0=ignore
 , 2 , 1 , 1 , , In`s: polynomial order
 index , X(1), X(2), X(3), Z, Column labels
 1, 1.0, 0.2, 0.3, 1.1, <same as before
 2, 0.3, 1.0, 0.1, 2.2, < "
 3, 0.1, 0.2, 1.0, -0.5, < "
 4, -1.0, 0.3, 0.2, -0.6, < "
 5, 0.5, -1.0, -0.3, -1.19, < " (noise included)
 6, -1.00, 0.00, 2.00, -3.00, <additional datapoints #6-#27
 7, -1.00, 0.50, -2.00, 2.00,
 8, -1.00, 0.50, 0.00, 0.00,
 9, -1.00, 0.50, 2.00, -2.00,
 10, 0.00, -0.50, -2.00, 1.00,
 11, 0.00, -0.50, 0.00, -1.00,
 12, 0.00, -0.50, 2.00, -3.00,
 13, 0.00, 0.00, -2.00, 2.00,
 14, 0.00, 0.00, 0.00, 0.00,
 15, 0.00, 0.00, 2.00, -2.00,
 16, 0.00, 0.50, -2.00, 3.00,
 17, 0.00, 0.50, 0.00, 1.00,
 18, 0.00, 0.50, 2.00, -1.00,
 19, 1.00, -0.50, -2.00, 2.00,
 20, 1.00, -0.50, 0.00, 0.00,
 21, 1.00, -0.50, 2.00, -2.00,
 22, 1.00, 0.00, -2.00, 3.00,
 23, 1.00, 0.00, 0.00, 1.00,
 24, 1.00, 0.00, 2.00, -1.00,
 25, 1.00, 0.50, -2.00, 4.00,
 26, 1.00, 0.50, 0.00, 2.00,
 27, 1.00, 0.50, 2.00, 0.00,
!////////////////////////////// End of Testcase ////////////////////////////7/9
The data above was synthesized by exercising:
 1.0*X(1)+2.0*X(2)-1.0*X(3) = Z

Hyperspace Algebra Tools version 0.50 Page 16 of 54 September 14th, 2011

Hat exports “HatOut.csv” with column formatting resembling the column formatting of the input data.
So taking the time to align the columns of your “HatIn.csv” may improve your subsequent
documentation and communication of the results achieved using HAT.

Comments about the setup of “HatIn.csv”: each field must be = 34 characters wide.
Line -4:
HatIn.csv, 2011.07.27,Jeff Setterholm, Three commas must follow the three fields.
Description| Date | Analyst Remarks are optional.
Line -3:
 27, 5, 1, 4 , Four commas must follow the four fields.
 nDatRows| nCols |nColIndex|MaxOrder Remarks are optional.
 “MaxOrder” is the highest combined power
 In version 0.40 this value must be >0, or the program stops.
 Set nColIndex = 0 if you have no index column.
Line -2:
 , 1 , 2 , 3 , -1 , >0=In`s|<0=Out`s|0=ignore
 nCols commas must follow the first nCols fields.
 Remarks are optional.
 The columns are reordered, per your assignments above, in “HatOut.csv”,
 which can then be renamed “HatIn.csv for subsequent editing & use as input.
Line -1:
 , 2 , 1 , 1 , , In`s: polynomial order
 nCols commas must follow the first nCols fields.
 Remarks are optional.
 , , , , , In`s: polynomial order is valid
Line 0:
 index , X(1), X(2), X(3), Z, Column labels
 nCols commas must follow the first nCols fields.
 Remarks are optional.
If you don’t provide an” Index” column for your data – HAT will add the column to “HatOut.csv”.
 The index is used in accuracy/error reporting.
Line 1: etc
 1, 1.0, 0.2, 0.3, 1.1, <same as before
 nCols commas must follow the first nCols fields. Indices don’t need to
sequential or ordered . Remarks are optional.
…
Line 27: HAT expects to read nDatRows of data.
 27, 1.00, 0.50, 2.00, 0.00,

As an example, changing lines -4 to 0 of the example on the previous page to:
HatIn.csv,2011.07.27,Jeff Setterholm, Description|Date|Analyst
 5, 5, 1, 1, nDatRows|nCols|nColIndex|MaxOrder
 , 3 , 2 , 1 , -1 , >0=In`s|<0=Out`s|0=ignore
 , 1 , 1 , 1 , , In`s: polynomial order
index , X(1), X(2), X(3), Y, Column labels

Produces “HatOut.csv”:
HatOut.csv,2011.07.27,Jeff Setterholm, Description|Date|Analyst
 5, 5, 1, 1, nDatRows|nCols|nColIndex|MaxOrd
 , 1 , 2 , 3 , -1 , >0=In`s|<0=Out`s|0=ignore
 , 1 , 1 , 1 , , In`s: polynomial order
 Index , X(3), X(2), X(1), Z, Column labels <- Columns are reordered.
 1, 0.3, 0.2, 1.0, 1.1, <same as before
 2, 0.1, 1.0, 0.3, 2.2, < "
 3, 1.0, 0.2, 0.1, -0.5, < "
 4, 0.2, 0.3, -1.0, -0.6, < " <- Data is truncated.
 5, -0.3, -1.0, 0.5, -1.19, < " (noise included)

Hyperspace Algebra Tools version 0.50 Page 17 of 54 September 14th, 2011

The polynomial coefficients are:
 Output# 1, Powers:
 1, 0.347122655325D-02, 0, 0, 0, <- the added 0th order term.
 2, -0.100348474693D+01, 1, 0, 0, <- coefficient of X(3)^1
 3, 0.199547695393D+01, 0, 1, 0, <- coefficient of X(2)^1
 4, 0.100037796722D+01, 0, 0, 1, !- coefficient of X(1)^1

Data Scaling
Even using 64-bit precision real numbers with ~ 24 significant digits, input data that naturally arises in
professional use of HAT (to do polynomial fits) will occasionally produce intermediate computations
concurrently both so large and so small that information is lost due to round off error in combining the
very large and very small numbers.

Earlier, the equation of a straight line: Y=m*X+b was mentioned wherein m is the slope and b is the
Y-intercept. Hat scales polynomial data by using m’s and b’s to adjust data values for better
computational advantage and also for better understanding. The names of m and b are changed to the
way that engineers talk - to Gain (=m) and Bias (=b), Gain and Bias – “GB” is my abbrev. - operate
on data columns; Gain multiplies the columns data entries (e.g.: vertically expands the data when
plotted on a 2-D graph) and Bias shifts the column entries (e.g. vertically moves the data up or down on
a graph without otherwise morphing the data).

Data Scaling – Pass 1 – Uniform Bounding - GB1
GB’ing every data column of “HatIn.csv” to exactly fit the interval [-1.0, 1.0] yields the fact that, no
matter how high the order of a polynomial becomes, the numerical partial derivatives will reach but-not-
exceed plus-or-minus 1.0. Hence the 24 significant digits will be used to better effect by operating on
numbers “that are in the same ballpark”. So we seek the GB values for:
 ColumnOut = Gain*ColumnIn + Bias
Sort through ColumnIn to find the smallest and largest values: ColumnInMin and ColumnInMax.
We want ColumnOutMin = -1.0 and ColumnOutMax = +1.0. So:

Gain = (ColumnOutMax - ColumnOutMin) / (ColumnInMax – ColumnInMin)
 = 2.0 / (ColumnInMax – ColumnInMin)

When (ColumnInMax–ColumnInMin)=0. (a constant column), set Gain = 1.0

Bias = ColumnOutMax - Gain * ColumnInMax
 = 1.0 - Gain * ColumnInMax

When (ColumnInMax–ColumnInMin)=0. this Bias value produces
ColumnOut=1.0, which seems to have benign downstream effects.

GB’ing into the interval [-1.0, 1.0] often yields polynomial coefficients that are also in the same
range; so when polynomial coefficients are significantly outside the range, the coefficients may be
competing with each other to force an un-natural fit. (I’m not sure… but watch for large GB1-scaled
polynomial coefficients and form your own opinion(s) about what’s happening.)

Un-scaling, or de-scaling the resulting coefficients to their requested values isn’t easy to do, but HAT
provides. Use of the binomial theorem and Pascal’s triangle in a multi-variable, arbitrary-order
polynomial environment accomplishes the task, here referred to as “de-GB’ing’. If you decide to tackle

Hyperspace Algebra Tools version 0.50 Page 18 of 54 September 14th, 2011

the algorithms, you may find that G’ing & de-G’ing are fairly easy to do, whereas de-B’ing is rather
complicated. I surmise that Bias shifts alter (~screw up) the inter-column geometry in hyperspace,
whereas a Gain change primarily affects the data column involved.

Pass 1 scaling – GB1 – for the data on page 15 yields:
Scaling the input columns into [-1.0,+1.0]
using G1 and B1... as in Y=G1*X+B1:
index X(1) X(2) X(3) : Z
G1: 1.0000 1.0000 0.5000 0.2857
B1: 0.0000 0.0000 0.0000 -0.1429
 --------- --------- --------- ---------
 1 1.000000 0.200000 0.150000 0.171429
 2 0.300000 1.000000 0.050000 0.485714
 3 0.100000 0.200000 0.500000 -0.285714
 4 -1.000000 0.300000 0.100000 -0.314286
 5 0.500000 -1.000000 -0.150000 -0.482857
 6 -1.000000 0.000000 1.000000 -1.000000
 7 -1.000000 0.500000 -1.000000 0.428571
 8 -1.000000 0.500000 0.000000 -0.142857
 9 -1.000000 0.500000 1.000000 -0.714286
 10 0.000000 -0.500000 -1.000000 0.142857
 11 0.000000 -0.500000 0.000000 -0.428571
 12 0.000000 -0.500000 1.000000 -1.000000
 13 0.000000 0.000000 -1.000000 0.428571
 14 0.000000 0.000000 0.000000 -0.142857
 15 0.000000 0.000000 1.000000 -0.714286
 16 0.000000 0.500000 -1.000000 0.714286
 17 0.000000 0.500000 0.000000 0.142857
 18 0.000000 0.500000 1.000000 -0.428571
 19 1.000000 -0.500000 -1.000000 0.428571
 20 1.000000 -0.500000 0.000000 -0.142857
 21 1.000000 -0.500000 1.000000 -0.714286
 22 1.000000 0.000000 -1.000000 0.714286
 23 1.000000 0.000000 0.000000 0.142857
 24 1.000000 0.000000 1.000000 -0.428571
 25 1.000000 0.500000 -1.000000 1.000000
 26 1.000000 0.500000 0.000000 0.428571
 27 1.000000 0.500000 1.000000 -0.142857

With no further scaling, after [B] is expanded to 13 columns to accommodate the 12 polynomial
coefficients, the upper left corner of [A] =[Ct]*[C] becomes:
 27.000000 5.900000 15.350000 2.200000 …
 5.900000 15.350000 5.153000 -1.780000 …
 15.350000 5.153000 15.070700 1.842000 …
 2.200000 -1.780000 1.842000 5.920000 …
 … … … …
Further insight can be gained by going through a second round of pure-gain adjustment, as you’ll see
shortly…

Intuition in hyperspace:
Two aspects of hyperspace seem intuitive to me:

1. A number called “the determinant” of a matrix is the (signed: ±) hypervolume
 enclosed by the vectors. (The outputs columns, if any, aren’t part of the determinant).
 This is just like “area” in 2-D and/or “volume” in 3-D. (The “shapes” are parallelepipeds.)

–and-
2. The “vector dot product” between any two columns of the matrix. When each column has a total
length of 1.0, the dot product is the cosine of the angle between the vectors. Hence the angle between
vectors can be computed in N-dimensional space and means the same thing as in 2-D or 3-D.
Details about determinant s & dot products follow.

Hyperspace Algebra Tools version 0.50 Page 19 of 54 September 14th, 2011

1.) It’s difficult to clearly communicate the closed-form mathematical expression for the value of the
determinant, but the value “falls out” of the solution processes that we’ve been using, with or without
full matrix inversion. Starting with the value 1.0, multiply by the values which are used (in division)
to reduce the initial matrix to an identity matrix; presto: the signed hypervolume of the input matrix
– the determinant – materializes; who’d have thought the computation would be that simple? If that
volume goes to zero – meaning that the input vectors are (somehow) collapsed on themselves, you
might be “dead-in-the-water” using ordinary Algebra 1 techniques to solve a problem; you have an
incomplete set of numerical partial derivatives. Fortunately HAT’s matrix inverter has features which
bypass determinant=0. hang-ups, a key feature in ease-of-use of the software; the inverter will
automatically reduce the size of the system appropriately and give you the next best answer – more on
how this is done later. Without a second round of pure-gain adjustment, the determinant of [A] “falls
out” as:
Determinant (= the signed hypervolume) for the 12-coefficient case:
Row: Column: Fractional contrib:
 1. *
 1 1 27.000000000000
 7 7 15.206666666667
 2 2 13.946062947538
 8 8 8.163783102623
 3 3 6.039931495913
 4 4 5.218495100420
 9 9 3.402570904799
 10 10 2.166841481094
 5 5 1.101593852033
 11 11 0.731652394579
 6 6 0.418126228482
 12 12 0.153616077359
Determinant= 562370.940460001886
… which looks like “just another very big, not particularly insightful, number”. The dot product
facilitates pure-gain adjustment , so let’s consider the dot product.

2.) It turns out that each individual output element in any matrix multiply (ref.: page 4) is a dot
product of the corresponding row vector –and- column vector on the right side of the equation. If X and
Y are any two vectors with the same number of elements, then:

X•Y = “X dot Y”
 = a real number (called a “scalar”, which is to say – a single number, ≅ “not a vector”)
 = (X(1)*Y(1) + X(2)*Y(2) + X(3)*Y(3) + X(4)*Y(4) +…etc.)
 = (Magnitude of X) * (Magnitude of Y) * Cosine(of the angle between X and Y in hyperspace)

---------- ~ End of “Intuition in Hyperspace” ----------

Data Scaling – Pass 2 – Pure-Gain Adjustment – G2
To use the dot product for pure-gain adjustment, take the dot product of each data column with itself.
The angle between a vector and itself is zero; so the cosine of the angle is 1.0. The dot product of
column Y with itself becomes:

Y•Y = (Magnitude of Y) * (Magnitude of Y) * 1.0
 = (Magnitude of Y) 2 hence the square root of this dot product is the length of Y.
So vectors are pure-gain adjusted to length one by dividing by the square root of the dot-product of the
vector with itself. The idea of length also remains intuitive in hyperspace.

Hyperspace Algebra Tools version 0.50 Page 20 of 54 September 14th, 2011

After [B] is expanded to 13 columns to accommodate the 12 polynomial coefficients, the G2 pure-gain
adjustments for the 13 columns of [C] are:

G2: 5.196152 3.917908 3.882100 2.433105 1.649364 1.565441 Z
 3.912480 3.006801 3.005653 1.592733 1.227905 1.226062 2.767392

Dividing each column of [C] by its G2 adjustment, the upper left corner of [Ct*C] becomes:
 1.000000 0.289812 0.760956 0.174012 …
 0.289812 1.000000 0.338797 -0.186726 …
 0.760956 0.338797 1.000000 0.195012 …
 0.174012 -0.186726 0.195012 1.000000 …
 … … … … …
The values above are the cosines of the actual angles between the various columns of data;
the corresponding actual angles (in degrees) are:
 0.000 73.153 40.451 79.979 …
 73.153 0.000 70.196 100.762 …
 40.451 70.196 0.000 78.755 …
 79.979 100.762 78.755 0.000 …
 … … … … …
Determinant for the 12-coefficient case:
Row: Column: Fractional contribution:
 1.0 *
 5 5 1.000000000000
 9 9 0.999983396784
 10 10 0.955558140299
 1 1 0.950096960741
 11 11 0.819076953471
 6 6 0.799783117546
 8 8 0.544194470370
 4 4 0.463868970282
 7 7 0.407156481554
 2 2 0.405694266581
 12 12 0.207186023014
 3 3 0.061769378211
Determinant= 0.000317364340
which tells you that only .031% of the maximum possible volume (=1.0) is enclosed by the 12 vectors.
This gives you a sense of “how far down toward the noise” the inverter is going in computing your
answers. In contrast, the four coefficient case using the same 27 datasets has a much more robust
determinant:

Determinant for the four-coefficient case:
Row: Column: Fractional contribution:
 1.0 *
 4 4 1.000000000000
 3 3 0.998569858442
 1 1 0.964149455586
 2 2 0.851506117380
Determinant= 0.819805043087 ~82% of the maximum volume is spanned

Each step of the matrix inversion process adds a dimension to the solution. The fractional contribution
reveals how far out of the accumulating solution hyper-subspace the next dimension protrudes; when the
value is less than 1.0, part of that dimension has been consumed by the solution subspace. When the
fractional contributions to the determinant = 0.0, the inverter has reached the-end-of-the- line… a

Hyperspace Algebra Tools version 0.50 Page 21 of 54 September 14th, 2011

collapsed subspace… all the rest of the dimensions are “linearly dependent”… and some dimension(s)
of [A] will need to be systematically discarded.

So the G2 pure-gain adjustment provides intuitive insight into what’s happening inside the inversion
hyper-subspaces, and reduces computational round off errors at the same time.

Reviving Collapsed Solutions = “Eliminating linear dependence(s)” - a simple example.

Let’s go back the opening problem and change Equation#3:
 Equation#3 = +2.1*Equation#1 -3.2*Equation#2
In a nutshell that’s “linear dependence”: when one vector equals the sum of any combination of the
other vectors... which only happens when a vector lies within the hyper-subspace already created by
one-or-more other vectors.

Recall that the fractional contributions show how far each new vector “sticks out” from the previous
hyper-subspace; if the new vector doesn’t “stick out” at all, then it’s linearly dependent… and “dead
wood”/useless… in terms of aiding the inversion process; the inverter is trying to map the output
(hyper)space back into the input (hyper)space, but the inverter can’t map back those dimensions of the
input (hyper)space wherein the numerical partial derivatives are undefined. Proceeding:

 Equation#1: 1.00 *A +0.20 *B +0.30 *C= 1.10 *(+2.1)
 Equation#2: 0.30 *A +1.00 *B +0.10 *C= 2.20 *(-3.2)
 Equation#3: 0.10 *A +0.20 *B +1.00 *C= -0.50
Revising equation#3 to be linearly dependent :
 Equation#3: 1.14 *A -2.78 *B +0.31 *C= -4.73
Now watch the inverter/solver crunch on this: Appendix B’s OverWriter solves this
 in detail on pages 34 thru 37 .

Equations: Reduce to Identity: Output#1: Append an identity matrix:
 -1 -2 -3
-1 1.000000 0.200000 0.300000 : 1.100000 1.000000 0.000000 0.000000
-2 0.300000 1.000000 0.100000 2.200000 0.000000 1.000000 0.000000
-3 1.140000 -2.780000 0.310000 -4.730000 0.000000 0.000000 1.000000
Row reductions “eliminate” one variable at a time using the largest remaining coefficient first:
 -1 2 -3
-1 1.082014 0.000000 0.322302 0.759712 1.000000 0.000000 0.071942
 3 -0.410072 1.000000 -0.111511 1.701439 0.000000 0.000000 -0.359712
-2 0.710072 0.000000 0.211511 0.498561 0.000000 1.000000 0.359712

...after the 2nd row reduction:
 1 2 -3
-1 1.000000 0.000000 0.297872 0.702128 0.924202 0.000000 0.066489
-3 0.000000 1.000000 0.010638 1.989362 0.378989 0.000000 -0.332447
 2 0.000000 0.000000 0.000000 0.000000 -0.656250 1.000000 0.312500

Matrix A is ill-conditioned! And the unreached space is the row and column of the 1.000000;
simply zero out that row and column, yielding:
 1 2 -3 Answer#1:
 1 1.000000 0.000000 0.297872 0.702128 0.924202 0.000000 0.066489
 3 0.000000 1.000000 0.010638 1.989362 0.378989 0.000000 -0.332447
-2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

I suggest the notation [A]-D = [Ad] for the chosen linearly- independent inverse subset of [A].

Hyperspace Algebra Tools version 0.50 Page 22 of 54 September 14th, 2011

The – sign on the indices keeps track of what rows and columns aren’t used and hence will be zero’d. In
this example: Equation#2 and variable C have been bypassed.
 [Ad]*[A]=
 1.000 0.000 0.298 -> A = 1.0*A + .298*C
 0.000 1.000 0.011 -> B = 1.0*B + .011*C
 0.000 0.000 0.000 -> C = .000*C
…showing how to combine the unknowns.

[A]*[Ad]=
 1.000 0.000 0.000 -> Eqn#1= 1.000*Eqn#1
 0.656 0.000 -0.313 -> Eqn#2= .656*Eqn#1- .313*Eqn#3
 0.000 0.000 1.000 -> Eqn#3= 1.000*Eqn#3
… showing how to combine the equations.
Eqn#2= .656*Eqn#1- .313*Eqn#3
 Eqn#3= 2.095*Eqn#1 -3.194*Eqn#2
Actually, at full precision: Eqn#3= 2.1 *Eqn#1 -3.2 *Eqn#2 as intended.

HAT’s overwriter performs the same computation, but in condensed notation:
 1 -3 2 Answer#1:
 1 0.924 0.000 0.066 0.702128 = A
 3 0.379 0.000 -0.332 1.989362 = B
-2 0.000 0.000 0.000 0.000000 = C

Again: Equation#2 and variable C have been eliminated in [Ad] – because their forward partial derivative
reduced to zero during the inversion process. The values for A, B, & C exactly satisfy Eqn#1, Eqn#2, and revised
Eqn#3 simultaneously – but only because Equation #3 was already in the 2-D inverted subspace.

When the OverWriter returns zeroed rows and columns inside the inverse matrix – HAT has
chosen a linearly dependent subset of the solution space to eliminate, from among several/many (at
least two) possible choices. While it may seem more like a bother than a boon to return these zero’d
values, the fact is that traditional matrix inverters stop, providing none of the (hyper)spatial insight that
[A]*[Ai] does (e.g.: above). Being able to revive collapsed solutions has analytical benefits that shine
when solving non-linear problems, which will be briefly discussed at the end of this paper. There’s
one benefit that is easy to explain, applies to HAT, and is amazing (at least to me):

In solving real-world engineering problems – vital information often exists within what appears to be
(in “casual” observation) worthless noise. At the same time, real-world problems often have close, but
not exact, partial derivatives. Unlike the linearly dependent example above, where the third-pass partial
derivative was 0.000000 , commonly the remaining derivatives get smaller and smaller without actually
going to zero. Every vector that’s inverted is implicitly “a signal”, and every vector that isn’t inverted is
“part of the noise”. So, in inversion, a “noise floor” is established that’s greater than zero, below which
the fractional contributions to the determinants will be ignored. What amazes me is that, as the
determinant of the incoming matrix gets closer to zero (drilling down into the noise), the determinant of
the inverse grows by a reciprocal amount (becomes an increasingly important signal)… which would go
to infinity in the limit. So, in the inverse matrix, the most dominant signals are right next to the noise
that was excluded! If the noise is allowed to invert, your answers are likely to be swamped by
nonsense! For arbitrary problems, at least part of the information supporting the accurate answers
resides close to the source of wrong answers; the essence of accurate problem solving is that harsh!

Hyperspace Algebra Tools version 0.50 Page 23 of 54 September 14th, 2011

…and Mother Nature isn’t even trying to deceive you, because she’s impartial… which is as close to
“fair” as you can reasonably hope to get… mistakes that result will be yours alone - after you’ve
outgrown HAT.

Appendix A has introductory matrix solver details.
Appendix B has a matrix PseudoInverter, OverWriter, & Linear Dependence Eliminator..

Appendix C: References Hat.exe version 0.50 – presently a matrix-based Polynomial Solver.

 --

For those with keen interest in what lies beyond HAT.exe, consider:

Pseudoinverse System Analysis

Eventually a significant fraction of the world’s sensor calibrations will be done using physics
models of the sensors – characterizing sensors by adjusting the coefficients of the ir physics models to
fit the data. Part of the elegance of this approach is that, when a sensor fails calibration, there’s a direct
connection to what went wrong inside the sensor; another part of the elegance is that the understanding
of the physics of the device is confirmed to be sufficiently accurate for the present purposes; another
part of the elegance is that the knowledge of how the device works is not lost as experts drift away from
the project.

Here are the additional concepts:
1. Most physics models are non-linear. Imagine that “solving problems” is about finding your way to
the bottom of an “error valley”. Linear systems resemble “one big valley” – such that, no matter where
you start, in one step you go the very bottom of the only valley… in a “least-squares sense”. Non-linear
models aren’t “one big valley”, instead, they’re like range of mountains, and if you plunk yourself down
anywhere & head downhill, you may arrive at the bottom of the wrong valley. An initial guess about the
coefficients of your model that puts the system analyzer “in the right valley” avoids a lot of iterating.

2. Given a physics model, numerical partial derivatives are easy to compute. Tweak the coefficients
a very small amount, note the resulting changes in all the outputs, divide the output changes by the
coefficient changes, and presto: you have the local numerical partial derivatives.
The partial derivatives form the [B] matrix, and (the present model Z- the measured Z) form the
Zerror vector or [Zerror] matrix. When you solve the [B]:[Zerror] system for deltaX, the deltaX
vector (which is a linear answer) will probably take you too far… to a place where X produces a larger
magnitude (length) of Zerror than where you started; but keep multiplying deltaX by smaller and
smaller step sizes, and at some closer range you’ll find lower error. Go there and repeat the process of
generating the partials.

3. Many physics models are locally linear around their correct solution. Hence, as your deltaX’s
move the solution farther downhill, the rate of convergence usually accelerates.

Hyperspace Algebra Tools version 0.50 Page 24 of 54 September 14th, 2011

In developing your algorithms for Pseudoinverse System Analysis, start with a seemingly simple
example to which you already know the answer, e.g.:
 Z = A * WB X(1)=A, X(2)=B
Where the actual answer is Z = 3.0 * W2
Using seven datasets: W=[1.,2.,3.,4.,5.,6.,7.] tweak factor for A & B = .0000001

Iteration Step Size A B Zerror
 0 0. 0.00000000 0.00000000 77.537087899921
 1 1. 60.00000010 0.00000000 49.112116631235
 Note: the inverter didn’t “bomb out” with B’s partials=0.
 2 .235620 38.56795235 0.29329714 40.530903802222
 3 .247580 24.26810100 0.58499904 34.227718152370
 4 .244914 15.12991934 0.87244842 29.660189115189
 5 .243793 9.77620060 1.13994511 25.936697899004
 6 .244955 6.85297078 1.36831328 22.118812610132
 7 .267468 5.17028361 1.56029434 17.914464550170
 8 .442948 3.56893485 1.81154376 12.152431891637
 Note: the rapid convergence once “close”:
 9 1.007952 2.83895959 2.02648293 0.688606551725
 10 1.031367 3.00242358 1.99881980 0.104336532734
 11 .999772 2.99999537 2.00000101 0.000026355628
 12 .999999 3.00000000 2.00000000 0.000000000058
 13 1.000966 3.00000000 2.00000000 0.000000000000

With a known answer, it’s easy to tell when the bottom of the correct valley has been found.

Appendix P, Entry #2, page 49-50, suggests how pseudoinverse system analysis and other high-
dimensional mathematical tools may aid in achieving transparent governance.

Hyperspace Algebra Tools version 0.50 Page 25 of 54 September 14th, 2011

Appendix A: An Introductory Matrix Solver
Pages 25 thru 27 are the output of program : “M1stUse.exe ”=” M1UseOut-AppendixA.txt”
Pages 28 thru 31 are the BASIC source code: “M1stUse.bas” (compiled by QuickBASIC 4.5)

The output datafile is: “M1USEOUT.TXT” as follows:
Output of: 'M1stUse.exe' version 0.40 2011.09.09 JMS

 The program may have errors.
 Input data may have been mis-interpreted.
 USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK.

Opening file 'MUSEIN.TXT' for input: Run: 09-09-2011 15:03:54
K-Equations: 3
N-Unknowns : 3
L-Outputs : 4
kEquations = nUnknowns

[A:Y] will be solved left-to-right.
Input from 'MUseIn.Txt': (Trailing commas cause read errors.)
 1 2 3
 1 0.3000 1.0000 0.1000 2.2000 0.0000 1.0000 0.0000
 2 1.0000 0.2000 0.3000 1.1000 1.0000 0.0000 0.0000
 3 0.1000 0.2000 1.0000 -0.5000 0.0000 0.0000 1.0000

This is like the opening example on page 3,
but rows 1 & 2 have been interchanged (including I) to exercise row swapping.

Set the noise floor:
ValMin= 0.000000010000000

----- Top of the loop: Reduce Row/column 1: -----
 1 2 3
 1 0.3000 1.0000 0.1000 2.2000 0.0000 1.0000 0.0000
 2 1.0000 0.2000 0.3000 1.1000 1.0000 0.0000 0.0000
 3 0.1000 0.2000 1.0000 -0.5000 0.0000 0.0000 1.0000

Find the largest remaining coefficient in column 1 of [A]:
The abs(max)= 1.0000 at n= 2
No division needed - step skipped.
Swapping row 2 with row 1: [A:Y] becomes: = the example on page 3.
 1 2 3
 1 1.0000 0.2000 0.3000 1.1000 1.0000 0.0000 0.0000
 2 0.3000 1.0000 0.1000 2.2000 0.0000 1.0000 0.0000
 3 0.1000 0.2000 1.0000 -0.5000 0.0000 0.0000 1.0000

Subtract row 1 from the other rows using a multiplier:
Reduce row 2 using multiplier 0.3000 above; [A:Y] becomes:
 1 2 3
 1 1.0000 0.2000 0.3000 1.1000 1.0000 0.0000 0.0000
 2 0.0000 0.9400 0.0100 1.8700 -0.3000 1.0000 0.0000
 3 0.1000 0.2000 1.0000 -0.5000 0.0000 0.0000 1.0000

Reduce row 3 using multiplier 0.1000 above; [A:Y] becomes:
 1 2 3
 1 1.0000 0.2000 0.3000 1.1000 1.0000 0.0000 0.0000
 2 0.0000 0.9400 0.0100 1.8700 -0.3000 1.0000 0.0000
 3 0.0000 0.1800 0.9700 -0.6100 -0.1000 0.0000 1.0000
 ^ At the bottom of the loop: this column has been reduced to the form seen in an identity matrix.

Hyperspace Algebra Tools version 0.50 Page 26 of 54 September 14th, 2011

----- Top of the loop: Reduce Row/column 2: -----
 1 2 3
 1 1.0000 0.2000 0.3000 1.1000 1.0000 0.0000 0.0000
 2 0.0000 0.9400 0.0100 1.8700 -0.3000 1.0000 0.0000
 3 0.0000 0.1800 0.9700 -0.6100 -0.1000 0.0000 1.0000

Find the largest remaining coefficient in column 2 of [A]:
The abs(max)= 0.9400 at n= 2
Dividing row 2 by 0.9400, [A:Y] becomes:
 1 2 3
 1 1.0000 0.2000 0.3000 1.1000 1.0000 0.0000 0.0000
 2 0.0000 1.0000 0.0106 1.9894 -0.3191 1.0638 0.0000
 3 0.0000 0.1800 0.9700 -0.6100 -0.1000 0.0000 1.0000

No row swapping needed - step skipped.

Subtract row 2 from the other rows using a multiplier:
Reduce row 1 using multiplier 0.2000 above; [A:Y] becomes:
 1 2 3
 1 1.0000 0.0000 0.2979 0.7021 1.0638 -0.2128 0.0000
 2 0.0000 1.0000 0.0106 1.9894 -0.3191 1.0638 0.0000
 3 0.0000 0.1800 0.9700 -0.6100 -0.1000 0.0000 1.0000

Reduce row 3 using multiplier 0.1800 above; [A:Y] becomes:
 1 2 3
 1 1.0000 0.0000 0.2979 0.7021 1.0638 -0.2128 0.0000
 2 0.0000 1.0000 0.0106 1.9894 -0.3191 1.0638 0.0000
 3 0.0000 0.0000 0.9681 -0.9681 -0.0426 -0.1915 1.0000
 ^ This column has been reduced to the form seen in an identity matrix.

----- Top of the loop: Reduce Row/column 3: -----
 1 2 3
 1 1.0000 0.0000 0.2979 0.7021 1.0638 -0.2128 0.0000
 2 0.0000 1.0000 0.0106 1.9894 -0.3191 1.0638 0.0000
 3 0.0000 0.0000 0.9681 -0.9681 -0.0426 -0.1915 1.0000

Find the largest coefficient in column 3 of [A]:
The abs(max)= 0.9681 at n= 3
Dividing row 3 by 0.9681, [A:Y] becomes:
 1 2 3
 1 1.0000 0.0000 0.2979 0.7021 1.0638 -0.2128 0.0000
 2 0.0000 1.0000 0.0106 1.9894 -0.3191 1.0638 0.0000
 3 0.0000 0.0000 1.0000 -1.0000 -0.0440 -0.1978 1.0330
No row swapping needed - step skipped.

Subtract row 3 from the other rows using a multiplier:
Reduce row 1 using multiplier 0.2979 above; [A:Y] becomes:
 1 2 3
 1 1.0000 0.0000 0.0000 1.0000 1.0769 -0.1538 -0.3077
 2 0.0000 1.0000 0.0106 1.9894 -0.3191 1.0638 0.0000
 3 0.0000 0.0000 1.0000 -1.0000 -0.0440 -0.1978 1.0330

Reduce row 2 using multiplier 0.0106 above; [A:Y] becomes:
 1 2 3
 1 1.0000 0.0000 0.0000 1.0000 1.0769 -0.1538 -0.3077
 2 0.0000 1.0000 0.0000 2.0000 -0.3187 1.0659 -0.0110
 3 0.0000 0.0000 1.0000 -1.0000 -0.0440 -0.1978 1.0330
 ̂ This column has been reduced to the form seen in an identity matrix.

Hyperspace Algebra Tools version 0.50 Page 27 of 54 September 14th, 2011

*** 'm1stUse.exe' - the solution of your input [A:Y] is: ***
[I:X] =
 1 2 3 Answer#1: & The inverse:
 1 1.0000 0.0000 0.0000 1.0000 1.0769 -0.1538 -0.3077
 2 0.0000 1.0000 0.0000 2.0000 -0.3187 1.0659 -0.0110
 3 0.0000 0.0000 1.0000 -1.0000 -0.0440 -0.1978 1.0330
 Perp#1 Perp#2 Perp#3

Note: The listing order of the equations doesn’t affect Answer#1, but swaps the columns of the inverse.
 Here the inverse is unchanged because the rows of the appended I were re-ordered along with the equations.

The Answers for each of your `L-Output` columns:
Answers for column 1: Answer#1
Unknown 1= 1.000000000000
Unknown 2= 2.000000000000
Unknown 3= -1.000000000000

Answers for column 2: Perp#1
Unknown 1= 1.076923076923
Unknown 2= -0.318681318681
Unknown 3= -0.043956043956

Answers for column 3: Perp#2
Unknown 1= -0.153846153846
Unknown 2= 1.065934065934
Unknown 3= -0.197802197802

Answers for column 4: Perp#3
Unknown 1= -0.307692307692
Unknown 2= -0.010989010989
Unknown 3= 1.032967032967

Done: 09-09-2011 15:03:54.

The input datafile: “M1USEIN.TXT” first/top dataset used above : (expanded listing: pages 32-33)
3, 3, 4
0.30, 1.00, 0.10, 2.20, 0.0, 1.0, 0.0
1.00, 0.20, 0.30, 1.10, 1.0, 0.0, 0.0
0.10, 0.20, 1.00, -0.50, 0.0, 0.0, 1.0
 Unused information follows.
Example vsn 0.50 ~Page 3: 3 equations, 3 unknowns, 4 outputs

This is like the opening example on page 3,
but rows 1 & 2 are interchanged (including I) to demonstrate the row swapping.

Hyperspace Algebra Tools version 0.50 Page 28 of 54 September 14th, 2011

The BASIC source code: “M1stUse.bas” follows.
The ~42 lines of code that actually solve [A:Y] are in black bold print.

DECLARE SUB PrintAY (nUnk%, MCol%)

REM ---
REM Program M1stUse.bas version 0.50 2011.09.09 Jeff Setterholm

REM Correct numerical examples reduce debug time when writing algorithms.
CLS
CLOSE #14

PRINT "M1stUse.exe version 0.50 2011.09.09 JMS"
PRINT ""
PRINT " `Matrix 1st Use` - An Introductory Matrix Solver, "
PRINT " written in BASIC. Solves [A:Y]. "
PRINT " The QuickBasic 4.5 source code is provided."
PRINT "M1stUse.exe is limited to:"
PRINT " 1. kEquations=nUnknowns,"
PRINT " 2. Linearly independent equations, and"
PRINT " 3. Solution left-to-right across the matrix."
PRINT " "
PRINT "M1stUse.exe:"
PRINT " Reads the first (top) dataset in 'MUSEIN.TXT'"
PRINT " Writes output/results to: 'M1USEOUT.TXT'"
PRINT ""
PRINT " (MUse.exe is a more powerful matrix solver,"
PRINT " but is more complicated as a result.)"
PRINT ""
PRINT " This program may have errors."
PRINT " Input data may be mis-interpreted."
PRINT " USE THIS PROGRAM ONLY AT YOUR OWN RISK."
PRINT " Type 'A' to accept the risks or 'Q' to quit:";
INPUT Accept$
IF Accept$ = "A" GOTO 10
IF Accept$ = "a" GOTO 10
END
10 REM

PRINT "Opening file 'M1USEOUT.TXT' for output:"
OPEN "M1USEOUT.TXT" FOR OUTPUT AS #14

PRINT #14, "Output of: 'M1stUse.exe' version 0.50 2011.09.09 JMS"
PRINT #14, ""
PRINT #14, " The program may have errors."
PRINT #14, " Input data may have been mis-interpreted."
PRINT #14, " USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK."
PRINT #14, ""

PRINT "Opening file 'MUSEIN.TXT' for input:"
PRINT #14, "Opening file 'MUSEIN.TXT' for input: ";
PRINT #14, USING " Run: & &"; DATE$; TIME$
OPEN "MUSEIN.TXT" FOR INPUT AS #12

REM ---
REM QuickBASIC 4.5 syntax:
REM ' :text following an apostrophe is a "Remark" (not compiled);
' variables ending in % are 16-bit integers;

Hyperspace Algebra Tools version 0.50 Page 29 of 54 September 14th, 2011

' variables ending in # are 64-bit`double precision`floating point numbers;
' QB4.5 is ~ not case sensitive.
'I use variable names starting with i,j,k,l,m,& n for integers.

INPUT #12, kEqu%, nUnk%, LOut%
PRINT #14, USING "K-Equations: ##"; kEqu%
PRINT #14, USING "N-Unknowns : ##"; nUnk%
PRINT #14, USING "L-Outputs : ##"; LOut%
IF (kEqu% <> nUnk%) THEN
 PRINT "The number of Equations must equal the number of Unknowns. Halt."
 PRINT #14, "The number of Equations must equal the number of Unknowns. Halt."
 REM STOP
 END
END IF '(kEqu%<>nUnk%)
PRINT #14, "kEquations = nUnknowns"
PRINT #14, ""
PRINT #14, "[A:Y] will be solved left-to-right."

MCol% = nUnk% + LOut% 'MCol%= total number of columns of matrix [A:Y]
DIM AY#(nUnk%, MCol%)

FOR k% = 1 TO kEqu%
 FOR m% = 1 TO MCol%
 INPUT #12, AY#(k%, m%)
 NEXT m%
NEXT k%
PRINT "Closing file 'MUSEIN.TXT'."
CLOSE #12
PRINT #14, "Input from 'MUseIn.Txt':";
PRINT #14, " (Trailing commas cause read errors.)"
CALL PrintAY(nUnk%, MCol%)

REM Solve AY#[]=[A:Y] left-to-right:

PRINT #14, "Set the noise floor:"
ValMin# = ABS(AY#(1, 1))
FOR n% = 1 TO nUnk%
 FOR m% = 1 TO nUnk%
 IF (ValMin# < ABS(AY#(n%, m%))) THEN
 ValMin# = ABS(AY#(n%, m%))
 END IF
 NEXT m%
NEXT n%
ValMin# = ValMin# / 100000000#
PRINT #14, USING "ValMin=######.###############"; ValMin#
PRINT #14, “”

FOR NextCol% = 1 TO nUnk%
 PRINT #14, USING "----- Top of the Loop: Reduce Row/column###: -----"; NextCol%
 CALL PrintAY(nUnk%, MCol%)

 PRINT #14, USING "Find the largest coeff. in column ## of [A]:"; NextCol%
 ValMax# = ValMin#
 nRowMax% = 0
 FOR nRowTest% = NextCol% TO nUnk%
 IF (ABS(ValMax#) < ABS(AY#(nRowTest%, NextCol%))) THEN
 ValMax# = AY#(nRowTest%, NextCol%)
 nRowMax% = nRowTest%
 END IF
 NEXT nRowTest%

Hyperspace Algebra Tools version 0.50 Page 30 of 54 September 14th, 2011

 IF (nRowMax% = 0) THEN
 PRINT "The input equations are linearly dependent."
 PRINT #14, "The input equations are linearly dependent. Halt."
 PRINT "Closing file 'M1USEOUT.TXT'."
 CLOSE #14
 PRINT "Halt."
 END
 END IF '(nRowMax%=0)
 PRINT #14, USING "The abs(max)= #######.####"; ValMax#;
 PRINT #14, USING " at n=##"; nRowMax%

 IF (ValMax# <> 1#) THEN
 PRINT #14, USING "Dividing row ## by ######.####,"; nRowMax%; ValMax#;
 PRINT #14, " [A:Y] becomes:"
 FOR m% = 1 TO MCol%
 AY#(nRowMax%, m%) = AY#(nRowMax%, m%) / ValMax#
 NEXT m%
 CALL PrintAY(nUnk%, MCol%)
 ELSE
 PRINT #14, "No division needed - step skipped."
 PRINT #14, ""
 END IF '(ValMax#<>1#)

 IF (nRowMax% <> NextCol%) THEN
 PRINT #14, USING "Swapping row ## with row ##:"; nRowMax%; NextCol%;
 PRINT #14, " [A:Y] becomes:"
 FOR m% = 1 TO MCol%
 A1# = AY#(nRowMax%, m%)
 AY#(nRowMax%, m%) = AY#(NextCol%, m%)
 AY#(NextCol%, m%) = A1#
 NEXT m%
 CALL PrintAY(nUnk%, MCol%)
 ELSE
 PRINT #14, "No row swapping needed - step skipped."
 PRINT #14, ""
 END IF '(nRowMax%<>NextCol%)

 PRINT #14, USING "Subtract row ## from the other rows"; NextCol%;
 PRINT #14, " using a multiplier:"
 FOR n% = 1 TO nUnk%
 IF (n% <> NextCol%) THEN
 ValNext# = AY#(n%, NextCol%)
 FOR m% = 1 TO MCol%
 AY#(n%, m%) = AY#(n%, m%) - ValNext# * AY#(NextCol%, m%)
 NEXT m%
 PRINT #14, USING "Reduce row ## "; n%;
 PRINT #14, USING " using multiplier #####.#### above; "; ValNext#;
 PRINT #14, " [A:Y] becomes:"
 CALL PrintAY(nUnk%, MCol%)
 END IF '(n%<>NextCol%)
 NEXT n%
NEXT NextCol%

Hyperspace Algebra Tools version 0.50 Page 31 of 54 September 14th, 2011

PRINT #14, "*** 'm1stUse.exe' - the solution of your input [A:Y] is: ***"
PRINT #14, "[I:X] ="
CALL PrintAY(nUnk%, MCol%)
IF (LOut% > 0) THEN
 PRINT #14, "The Answers for each of your `L-Output` columns:"
 FOR L% = 1 TO LOut%
 PRINT #14, USING "Answers for column ##:"; L%
 FOR n% = 1 TO nUnk%
 PRINT #14, USING "Unknown###="; n%;
 PRINT #14, USING " #########.############"; AY#(n%, nUnk% + L%)
 NEXT n%
 PRINT #14, ""
 NEXT L%
END IF '(LOut% > 0)

PRINT #14, USING "Done: & &."; DATE$; TIME$
PRINT "Closing file 'M1USEOUT.TXT'."
PRINT USING "Done: & & Press escape."; DATE$; TIME$
CLOSE #14
END
REM ---
SUB PrintAY (nUnk%, MCol%)
 SHARED AY#()
 PRINT #14, " ";
 FOR m% = 1 TO nUnk%
 PRINT #14, USING "###### "; m%;
 NEXT m%
 PRINT #14, " "
 FOR n% = 1 TO nUnk%
 PRINT #14, USING "##"; n%;
 FOR m% = 1 TO MCol%
 PRINT #14, USING "######.####"; AY#(n%, m%);
 NEXT m%
 PRINT #14, ""
 NEXT n%
 PRINT #14, ""
END SUB
--

Hyperspace Algebra Tools version 0.50 Page 32 of 54 September 14th, 2011

The input datafile: “MUSEIN.TXT”: Used by both “M1stUse.exe” & “MUse.exe”

3, 3, 4
0.30, 1.00, 0.10, 2.20, 0.0, 1.0, 0.0
1.00, 0.20, 0.30, 1.10, 1.0, 0.0, 0.0
0.10, 0.20, 1.00, -0.50, 0.0, 0.0, 1.0
 Unused information follows.
Example vsn. 0.50 ~Page 3: 3 equations, 3 unknowns, 4 outputs... [A:Y]
Opening example - but rows 1 & 2 are interchanged (including I)
 to show row swapping.
 - Row swapping restores the original example
 and the solution proceeds.
The test case polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y
--
Test datasets for: M1stUse.bas/.exe version 0.50 2011.09.09 Jeff Setterholm
 (A simple matrix solver for kEquations=nUnknowns.)
 and: MUse.bas /.exe version 0.50
 (An OverWriting matrix solver.)
 ^Both these programs relate to Hat.pdf version 0.50

Only the top dataset is read and used.

Note: Trailing commas will cause data misreads.
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y
--
3, 3, 4
1.00, 0.20, 0.30, 1.10, 1.0, 0.0, 0.0
0.30, 1.00, 0.10, 2.20, 0.0, 1.0, 0.0
0.10, 0.20, 1.00, -0.50, 0.0, 0.0, 1.0
 Unused information follows.
Example vsn. 0.50 ~Page 3: 3 equations, 3 unknowns, 4 outputs... [A:Y]
Opening example
The test case polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y
--
3, 3, 4
1.00, 0.20, 0.30, 1.10, 1.0, 0.0, 0.0
0.30, 1.00, 0.10, 2.20, 0.0, 1.0, 0.0
1.14, -2.78, 0.31, -4.73, 0.0, 0.0, 1.0
 Unused information follows.
Appendix B's TestCase for MUse.exe: Linear Depencence
Example vsn 0.50 ~Page 21: 4 equations, 3 unknowns, 1 output... [A:Y]
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y
--
12, 12, 1
 1., 1. , 1. , 0.20, 0.20, 0.20, 0.30, 0.30, 0.30 , 0.06, 0.06, 0.06 , 1.1
 1., 0.3, 0.09, 1. , 0.3 , 0.09, 0.1 , 0.03, 0.009, 0.1 , 0.03, 0.009, 2.2
 1., 0.1, 0.01, 0.2 , 0.02, 0.002, 1. , 0.1 , 0.01 , 0.2 , 0.02, 0.002,-0.5
 1., -1. , 1. , 0.3 , -0.3 , 0.3 , 0.2 , -0.2 , 0.2 , 0.06, -0.06, 0.06 ,-0.6
 1., 0.5, 0.25, -1. , -0.5 , -0.25, -0.3 , -0.15, -0.075, 0.3 , 0.15, 0.075,-1.2
 1., -1. , 1. , 0. , 0. , 0. , 2. , -2. , 2. , 0. , 0. , 0. ,-3.0
 1., -1. , 1. , 0.5 , -0.5 , 0.5 , -2. , 2. , -2. ,-1. , 1. , -1. , 2.0
 1., -1. , 1. , 0.5 , -0.5 , 0.5 , 2. , -2. , 2. , 1. , -1. , 1. ,-2.0
 1., 1. , 1. , -0.5 , -0.5 , -0.5 , -2. , -2. , -2. , 1. , 1. , 1. , 2.0
 1., 0. , 0. , 0.5 , 0. , 0. , -2. , 0. , 0. ,-1. , 0. , 0. , 3.0
 1., 1. , 1. , -0.5 , -0.5 , -0.5 , 2. , 2. , 2. ,-1. , -1. , -1. ,-2.0
 1., 1. , 1. , 0.5 , 0.5 , 0.5 , -2. , -2. , -2. ,-1. , -1. , -1. , 4.0
 Unused information follows.
 X(1)^1 X(2)^1 X(3)^1 Y
 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3: Y
 ^0^0^0 ^1^0^0 ^2^0^0 ^0^1^0 ^1^1^0 ^2^1^0 ^0^0^1 ^1^0^1 ^2^0^1 ^0^1^1 ^1^1^1 ^2^1^1

Hyperspace Algebra Tools version 0.50 Page 33 of 54 September 14th, 2011

Example vsn 0.50 ~Page 12: 12 of the 27 equations, 12 unknowns, 1 outputs
These are some of the polynomial partial derivatives and outputs of a testcase polynomial.
The test case polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Y

5 3 1
 1.0, 0.2, 0.3, 1.1
 0.3, 1.0, 0.1, 2.2
 0.1, 0.2, 1.0, -0.5
-1.0, 0.3, 0.2, -0.6
 0.5, -1.0, -0.3, -1.2
 Unused information follows.
Example vsn 0.50 ~Page 6: 5 equations, 3 unknowns, 1 outputs ... [B:Z]
More equations than unknowns
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Z
--
27, 3, 1
 1.0 , 0.2 , 0.3 , 1.1
 0.3 , 1.0 , 0.1 , 2.2
 0.1 , 0.2 , 1.0 , -0.5
 -1.0 , 0.3 , 0.2 , -0.6
 0.5 , -1.0 , -0.3 , -1.19
 -1.00, 0.00, 2.00, -3.00
 -1.00, 0.50, -2.00, 2.00
 -1.00, 0.50, 0.00, 0.00
 -1.00, 0.50, 2.00, -2.00
 0.00, -0.50, -2.00, 1.00
 0.00, -0.50, 0.00, -1.00
 0.00, -0.50, 2.00, -3.00
 0.00, 0.00, -2.00, 2.00
 0.00, 0.00, 0.00, 0.00
 0.00, 0.00, 2.00, -2.00
 0.00, 0.50, -2.00, 3.00
 0.00, 0.50, 0.00, 1.00
 0.00, 0.50, 2.00, -1.00
 1.00, -0.50, -2.00, 2.00
 1.00, -0.50, 0.00, 0.00
 1.00, -0.50, 2.00, -2.00
 1.00, 0.00, -2.00, 3.00
 1.00, 0.00, 0.00, 1.00
 1.00, 0.00, 2.00, -1.00
 1.00, 0.50, -2.00, 4.00
 1.00, 0.50, 0.00, 2.00
 1.00, 0.50, 2.00, 0.00
 Unused information follows.
 X(1) X(2) X(3) Y

Example vsn 0.50 ~Page 11: 27 equations, 3 unknowns, 1 outputs ... [B:Z]
equations>unknowns; dataset with Y(5) noise.
The testcase polynomial is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Z

^ This is a partial listing. For the full listing, download:
http://ftp.setterholm.com/PseudoInverse/AppendixA/MUseIn.txt
 as well as: /M1stUse.bas,
 /M1stUse.txt ,
 & /m1stUse.exe

End of Appendix A: An Introductory Matrix Solver

Hyperspace Algebra Tools version 0.50 Page 34 of 54 September 14th, 2011

Appendix B: Matrix Solver Details

The BASIC source code of “MUse.bas/.exe:

A Matrix PseudoInverter, OverWriter, & Linear Dependence Eliminator.

http://ftp.setterholm.com/PseudoInverse/AppendixB includes:
09/14/2011 09:38 AM 21,297 MUse.bas … listed here.
09/14/2011 09:39 AM 53,448 MUSE.EXE
09/09/2011 03:08 PM 9,711 MUSEIN.TXT
09/14/2011 09:39 AM 7,785 MUSEOUT-AppendixB.TXT … listed here.
09/14/2011 07:54 AM 9,119 MUSEOUT-Page6Example.TXT
08/09/2011 08:36 AM 1,205 _StDos.bat

Pages 34 thru 37 are “MUseOut.txt”;
pages 38 thru 47 are : “MUse.bas”
 “MUseOut.txt”:

Output of: 'MUse.exe' version 0.40 Run: 09-14-2011 09:39:38

A Matrix OverWriter & Linear Dependence Eliminator in action...

 The program may have errors.
 Input data may have been mis-interpreted.
 USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK!

 This output is intended to be useful as 'TestCase Data'
 in writing and debugging your own Matrix OverWriter code
 in your computer language of choice.

Opening file 'MUSEIN.TXT' for input: Run: 09-14-2011 09:00:24
K-Equations: 3
N-Unknowns : 3
L-Outputs : 1
Your input matrix: (Trailing commas cause read errors.)
 1 2 3
 1 1.000000 0.200000 0.300000 1.100000
 2 0.300000 1.000000 0.100000 2.200000
 3 1.140000 -2.780000 0.310000 -4.730000
 … this is the problem on page 21.
--- Entering: kEquations = nUnknowns; solve directly: ---
 Coefficients: The Outputs
Your input: [[A] : [Y]]
 solving: [[A] : [Y]]

 yielding: [[Ai] : [X]]
 i.e.: The inverse:The Answers
 ...an '~exact fit' if [A] is linearly independent.

Matrix to be solved:
 1 2 3
 1 1.000000 0.200000 0.300000 1.100000
 2 0.300000 1.000000 0.100000 2.200000
 3 1.140000 -2.780000 0.310000 -4.730000

--- Entering Subroutine OverWriter(): ---

Set the noise floor:
ValMin= 0.000000027800000

Hyperspace Algebra Tools version 0.50 Page 35 of 54 September 14th, 2011

 *** Top of the loop: Iteration 1: ***
 -1 -2 -3
 -1 1.000000 0.200000 0.300000 1.100000
 -2 0.300000 1.000000 0.100000 2.200000
 -3 1.140000 -2.780000 0.310000 -4.730000

The abs(max)= -2.7800 at n= 3 m= 2
Det.Product = -2.780000
Divide row 3 by -2.7800:
 -1 2 -3
 -1 1.000000 0.200000 0.300000 1.100000
 -2 0.300000 1.000000 0.100000 2.200000
 3 -0.410072 1.000000 -0.111511 1.701439

Swap row 3 with row 2:
 -1 2 -3
 -1 1.000000 0.200000 0.300000 1.100000
 3 -0.410072 1.000000 -0.111511 1.701439
 -2 0.300000 1.000000 0.100000 2.200000

Swap column 2 with column 3:
 -1 -3 2
 -1 1.000000 0.300000 0.200000 1.100000
 3 -0.410072 -0.111511 1.000000 1.701439
 -2 0.300000 0.100000 1.000000 2.200000

Subtract iPivot row 2 from the other rows using a multiplier:
Reduce row 1 using multiplier 0.2000 above:
 -1 -3 2
 -1 1.082014 0.322302 0.000000 0.759712
 3 -0.410072 -0.111511 1.000000 1.701439
 -2 0.300000 0.100000 1.000000 2.200000

Reduce row 3 using multiplier 1.0000 above:
 -1 -3 2
 -1 1.082014 0.322302 0.000000 0.759712
 3 -0.410072 -0.111511 1.000000 1.701439
 -2 0.710072 0.211511 0.000000 0.498561

and OverWrite the inverse in column 3 [A:Y] becomes:
 -1 -3 2
 -1 1.082014 0.322302 0.071942 0.759712
 3 -0.410072 -0.111511 -0.359712 1.701439
 -2 0.710072 0.211511 0.359712 0.498561

Hyperspace Algebra Tools version 0.50 Page 36 of 54 September 14th, 2011

 *** Top of the loop: Iteration 2: ***
 -1 -3 2
 -1 1.082014 0.322302 0.071942 0.759712
 3 -0.410072 -0.111511 -0.359712 1.701439
 -2 0.710072 0.211511 0.359712 0.498561

The abs(max)= 1.0820 at n= 1 m= 1
Det.Product = -3.008000
Divide row 1 by 1.0820:
 1 -3 2
 1 1.000000 0.297872 0.066489 0.702128
 3 -0.410072 -0.111511 -0.359712 1.701439
 -2 0.710072 0.211511 0.359712 0.498561
No row swapping needed - step skipped.
No column swapping needed - step skipped.

Subtract iPivot row 1 from the other rows using a multiplier:
Reduce row 2 using multiplier -0.4101 above:
 1 -3 2
 1 1.000000 0.297872 0.066489 0.702128
 3 0.000000 0.010638 -0.332447 1.989362
 -2 0.710072 0.211511 0.359712 0.498561

Reduce row 3 using multiplier 0.7101 above:
 1 -3 2
 1 1.000000 0.297872 0.066489 0.702128
 3 0.000000 0.010638 -0.332447 1.989362
 -2 0.000000 0.000000 0.312500 -0.000000

and OverWrite the inverse in column 1 [A:Y] becomes:
 1 -3 2
 1 0.924202 0.297872 0.066489 0.702128
 3 0.378989 0.010638 -0.332447 1.989362
 -2 -0.656250 0.000000 0.312500 -0.000000

 *** Top of the loop: Iteration 3: ***
 1 -3 2
 1 0.924202 0.297872 0.066489 0.702128
 3 0.378989 0.010638 -0.332447 1.989362
 -2 -0.656250 0.000000 0.312500 -0.000000

The input equations are linearly dependent.
 Negative indices indicate dependent rows & columns.
Overwriter inverse zero-ing uses the negative indices.
Salvaging a linearly-independent subset of [Ai] as [Ad]:
 1 -3 2
 1 0.924202 0.000000 0.066489 0.702128
 3 0.378989 0.000000 -0.332447 1.989362
 -2 0.000000 0.000000 0.000000 0.000000

Hyperspace Algebra Tools version 0.50 Page 37 of 54 September 14th, 2011

*** Solver's results: ***
Determinant = -3.008000
 Rank = 2
 1 -3 2
 1 0.924202 0.000000 0.066489 0.702128 = A
 3 0.378989 0.000000 -0.332447 1.989362 = B
 -2 0.000000 0.000000 0.000000 0.000000 = C
 |------------------- [Ai] with -------------------|-- Answer#1 --|
 linear dependence eliminated.

OverWriter Check: [Ap]*[A] = [I] ? No.
 1 -3 2
 1 1.000000 0.000000 -0.000000
 3 0.656250 0.000000 -0.312500
 -2 0.000000 0.000000 1.000000

OverWriter Check: [A]*[Ap] = [I] ? No.
 1 -3 2
 1 1.000000 -0.000000 0.297872
 3 -0.000000 1.000000 0.010638
 -2 0.000000 0.000000 0.000000

--- Exiting Subroutine OverWriter(): ---

--- Entering Subroutine ErrorEval(): ---

*** Answers & Error evaluation: ***
Answers for column 1:
Unknown 1= 0.702127659574 = 7.021276595745D-001
Unknown 2= 1.989361702128 = 1.989361702128D+000
Unknown 3= 0.000000000000 = 0.000000000000D+000

Error evaluation for column 1:
Equation: Ycomputed - Yin = Yerror
 1: 1.100000000 1.100000000 0.000000000 = 0.000000000D+000
 2: 2.200000000 2.200000000 0.000000000 = 0.000000000D+000
 3: -4.730000000 -4.730000000 0.000000000 = 0.000000000D+000

 RMS error= 0.000000000 = 0.000000000D+000

--- Exiting Subroutine ErrorEval(): ---

 [Ai]*[A] = [I] ? No.
 1 2 3
 1 1.000000 -0.000000 0.297872
 2 -0.000000 1.000000 0.010638
 3 0.000000 0.000000 0.000000
 … the significance is explained on page 22.
 [A]*[Ai] = [I] ? No.
 1 2 3
 1 1.000000 0.000000 -0.000000
 2 0.656250 0.000000 -0.312500
 3 0.000000 0.000000 1.000000
 … the significance is explained on page 22.

--- Exiting: kEquations = nUnknowns ---
Done: 09-14-2011 09:39:38 - closing MUSEOUT.TXT -----------------------------------

Hyperspace Algebra Tools version 0.50 Page 38 of 54 September 14th, 2011

: “MUse.bas”:

DECLARE SUB PrintAY (nRows%, mCols%, AYsee#())
DECLARE SUB OverWriter (nUnk%, mCol%, AY#())
DECLARE SUB ErrorEval (kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%)
DECLARE SUB PrintowAY (nRows%, mCols%, AYsee#(), nUsed%(), mUsed%())
REM ---
REM Program MUse.bas version 0.50 2011.09.14 Jeff Setterholm

REM BASIC compilers are ubiquitous.
REM Correct numerical examples reduce debug time when writing algorithms.
CLS
CLOSE #14

PRINT "MUse.exe version 0.50 2011.09.14 JMS"
PRINT ""
PRINT " `Matrix Use` - a matrix solver. "
PRINT "A Matrix OverWriter & Linear Dependence Eliminator... in action."
PRINT " Written in BASIC. Solves [A:Y] = itself (equations=unknowns)"
PRINT " -or- "
PRINT " = [Bt*B:Bt*Z] (PseudoInverse). "
PRINT " The QuickBasic 4.5 source code is provided."
PRINT ""
PRINT " The output is intended to be useful as 'TestCase Data'"
PRINT " in writing and debugging your own Matrix OverWriter code"
PRINT " in your computer language of choice."
PRINT ""
PRINT "MUse.exe:"
PRINT " Reads the first (top) dataset in 'MUSEIN.TXT'"
PRINT " Writes output/results to: 'MUSEOUT.TXT'"
PRINT ""
REM --- Cautions & Acknowledgement: ---
PRINT " This program may have errors."
PRINT " Input data may be mis-interpreted."
PRINT " USE THIS PROGRAM ONLY AT YOUR OWN RISK."
PRINT " Type 'A' to accept the risks or 'Q' to quit:";
INPUT Accept$
IF ((Accept$ <> "A") AND (Accept$ <> "a")) THEN END

PRINT ""
PRINT "Opening file 'M1USEOUT.TXT' for output:"
OPEN "MUSEOUT.TXT" FOR OUTPUT AS #14

PRINT #14, "Output of: 'MUse.exe' version 0.50 2011.09.14 JMS"
PRINT #14, ""
PRINT #14, "A Matrix OverWriter & Linear Dependence Eliminator in action..."
PRINT #14, ""
PRINT #14, " The program may have errors."
PRINT #14, " Input data may have been mis-interpreted."
PRINT #14, " USE THIS PROGRAM'S RESULTS ONLY AT YOUR OWN RISK!"
PRINT #14, ""
PRINT #14, " This output is intended to be useful as 'TestCase Data'"
PRINT #14, " in writing and debugging your own Matrix OverWriter code"
PRINT #14, " in your computer language of choice."
PRINT #14, ""
REM --- End C&A. ---

Hyperspace Algebra Tools version 0.50 Page 39 of 54 September 14th, 2011

PRINT "Opening file 'MUSEIN.TXT' for input:"
PRINT #14, "Opening file 'MUSEIN.TXT' for input: ";
PRINT #14, USING " Run: & &"; DATE$; TIME$

REM ---
REM QuickBASIC 4.5 syntax:
REM ' :text following an apostrophe is a "Remark" (not compiled);
' variables ending in % are 16-bit integers;
' variables ending in # are 64-bit`double precision`floating point numbers;
' QB4.5 is ~ not case sensitive.
'I use variable names starting with i,j,k,l,m,& n for integers.

OPEN "MUSEIN.TXT" FOR INPUT AS #12 '-- Data input:
 INPUT #12, kEqu%, nUnk%, LOut%
 PRINT #14, USING "K-Equations: ##"; kEqu%
 PRINT #14, USING "N-Unknowns : ##"; nUnk%
 PRINT #14, USING "L-Outputs : ##"; LOut%
 mCol% = nUnk% + LOut% 'number of Columns.

 kEqu2% = kEqu% 'avoids "variable ailiasing"
 nUnk2% = nUnk% ' in calls to subroutines.

IF (kEqu% = nUnk%) THEN '------------------------- kEquations=nUnknowns:
 DIM AY#(nUnk%, mCol%) 'Continue with data read:
 FOR n% = 1 TO nUnk%
 FOR m% = 1 TO mCol%
 INPUT #12, AY#(n%, m%)
 NEXT m%
 NEXT n%
 PRINT "Closing file 'MUSEIN.TXT'."
 CLOSE #12 'Data read completed.

 PRINT #14, "Your input matrix: (Trailing commas cause read errors.)"
 CALL PrintAY(nUnk%, mCol%, AY#()) 'Print the input matrix:
 PRINT #14, "--- Entering: kEquations = nUnknowns; solve directly: ---"
 PRINT #14, " Coefficients: The Outputs "
 PRINT #14, "Your input: [[A] : [Y]]"
 PRINT #14, " solving: [[A] : [Y]]"
 PRINT #14, ""
 PRINT #14, " yielding: [[Ai] : [X]]"
 PRINT #14, " i.e.: The inverse:The Answers "
 PRINT #14, " ...an '~exact fit' if [A] is linearly independent."
 PRINT #14, ""
 PRINT #14, "Matrix to be solved:"
 CALL PrintAY(kEqu%, mCol%, AY#())

 DIM AiX#(nUnk%, mCol%) '-- Solve the equations:
 FOR n% = 1 TO nUnk%
 FOR m% = 1 TO mCol%
 AiX#(n%, m%) = AY#(n%, m%) 'Saves [A:Y] for use below.
 NEXT m%
 NEXT n%
 CALL OverWriter(nUnk%, mCol%, AiX#()) 'Solves [Ai:X] (<-[A:Y])
 IF (LOut% > 0) THEN 'Evaluate the accuracy:
 iAX1BZ2% = 1
 CALL ErrorEval(kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%)
 END IF '(LOutputs>0)

Hyperspace Algebra Tools version 0.50 Page 40 of 54 September 14th, 2011

 REM ------
 PRINT #14, "[Ai]*[A] = [I] ?"
 DIM AiA#(nUnk%, nUnk2%)
 FOR n% = 1 TO nUnk% '[Ai:A]=[Ai]*[A]
 FOR m% = 1 TO nUnk%
 FOR nm% = 1 TO nUnk%
 AiA#(n%, m%) = AiA#(n%, m%) + AiX#(n%, nm%) * AY#(nm%, m%)
 NEXT nm%
 NEXT m%
 NEXT n%
 CALL PrintAY(nUnk%, nUnk2%, AiA#())
 ERASE AiA#

 PRINT #14, ""
 PRINT #14, "[A]*[Ai] = [I] ?"
 DIM AAi#(nUnk%, nUnk2%)
 FOR n% = 1 TO nUnk% '[A:Ai]=[A]*[Ai]
 FOR m% = 1 TO nUnk%
 FOR nm% = 1 TO nUnk%
 AAi#(n%, m%) = AAi#(n%, m%) + AY#(n%, nm%) * AiX#(nm%, m%)
 NEXT nm%
 NEXT m%
 NEXT n%
 CALL PrintAY(nUnk%, nUnk2%, AAi#())
 ERASE AAi#

 ERASE AY#
 ERASE AiX#

 PRINT #14, ""
 PRINT #14, "--- Exiting: kEquations = nUnknowns ---"

 ELSE '--- kEquations<>nUnknowns:
 DIM BZ#(kEqu%, mCol%) 'Continue with data read:
 FOR K% = 1 TO kEqu%
 FOR m% = 1 TO mCol%
 INPUT #12, BZ#(K%, m%)
 NEXT m%
 NEXT K%
 PRINT "Closing file 'MUSEIN.TXT'."
 CLOSE #12 'Data read completed.

 PRINT #14, "Your input matrix: (Trailing commas cause read errors.)"
 CALL PrintAY(kEqu%, mCol%, BZ#()) 'Print the input matrix:
 PRINT #14, "--- Entering: kEquations <> nUnknowns ---"
 PRINT #14, ""
 PRINT #14, " Coefficients: The Outputs "
 PRINT #14, "Your input: [[B] : [Z]]"
 PRINT #14, "Will solve: [[Bt*B] : [Bt*Z]]"
 PRINT #14, " as: [[A] : [Y]]"
 PRINT #14, ""
 PRINT #14, " yeilding: [[Ai] : [X]]"
 PRINT #14, " i.e.: :The Answers "
 PRINT #14, " ...a `least-squares best fit` of [Z]."
 PRINT #14, " : print: [Bp] = [Ai]*[Bt]"
 PRINT #14, " i.e.: The pseudoinverse of [B]"
 PRINT #14, " : print: [Bp]*[B] =I ? and "
 PRINT #14, " : print: [B]*[Bp]"

Hyperspace Algebra Tools version 0.50 Page 41 of 54 September 14th, 2011

 DIM AY#(nUnk%, mCol%) 'Dimension [A:Y] ‘ PseudoInverse
 FOR n% = 1 TO nUnk% ' Morph [A:Y] <- [B:Z]
 FOR m% = 1 TO mCol% 'in eight lines of BASIC code!
 AY#(n%, m%) = 0#
 FOR K% = 1 TO kEqu% '[A:Y]=[[Bt]*[B] : [Bt]*[Z]]
 AY#(n%, m%) = AY#(n%, m%) + BZ#(K%, n%) * BZ#(K%, m%)
 NEXT K%
 NEXT m%
 NEXT n% ‘ … an elegant summary!

 PRINT #14, ""
 PRINT #14, "Matrix to be solved: (note: [A] = [Bt]*[B] is symmetric)"
 CALL PrintAY(nUnk%, mCol%, AY#())
 REM Call Gain2(nUnk%, mCol%)
 DIM AiX#(nUnk%, mCol%) '-- Solve the equations:
 FOR n% = 1 TO nUnk%
 FOR m% = 1 TO mCol%
 AiX#(n%, m%) = AY#(n%, m%) 'Saves [A:Y] for use below.
 NEXT m%
 NEXT n%
 CALL OverWriter(nUnk%, mCol%, AiX#()) 'Solves [Ai:X] (<-[A:Y])
 REM Call DeGain2(nUnk%, mCol%)
 REM PRINT #14, "*** 'MUse.exe' - Solution: ***"
 REM CALL PrintAY(nUnk%, mCol%, AY#())

 IF (LOut% > 0) THEN 'Evaluate the accuracy:
 iAX1BZ2% = 2
 CALL ErrorEval(kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%)
 END IF '(LOut% > 0)

 REM ------
 PRINT #14, "Computing the pseudoinverse: [Bp]="
 DIM Bp#(nUnk%, kEqu%)
 PRINT #14, "Unknown ";
 FOR K% = 1 TO kEqu%
 PRINT #14, USING " Eqn:## "; K%;
 NEXT K%
 PRINT #14, ""

 FOR n% = 1 TO nUnk% '[Bp] = ([Bt]*[B])i * [Bt]
 PRINT #14, USING "#### "; n%;
 FOR K% = 1 TO kEqu%
 Bp#(n%, K%) = 0#
 FOR nm% = 1 TO nUnk%
 Bp#(n%, K%) = Bp#(n%, K%) + AiX#(n%, nm%) * BZ#(K%, nm%)
 NEXT nm%
 PRINT #14, USING "######.######"; Bp#(n%, K%);
 NEXT K%
 PRINT #14, ""
 NEXT n%
 PRINT #14, ""

Hyperspace Algebra Tools version 0.50 Page 42 of 54 September 14th, 2011

 IF (kEqu% < nUnk%) THEN PRINT #14, "[Bp]*[B] = not [I]"
 IF (kEqu% > nUnk%) THEN PRINT #14, "[Bp]*[B] = [I] ?"
 DIM BpB#(nUnk%, nUnk2%)
 FOR n% = 1 TO nUnk% '[BpB]=[Bp]*[B]
 FOR m% = 1 TO nUnk%
 FOR K% = 1 TO kEqu%
 BpB#(n%, m%) = BpB#(n%, m%) + Bp#(n%, K%) * BZ#(K%, m%)
 NEXT K%
 NEXT m%
 NEXT n%
 CALL PrintAY(nUnk%, nUnk2%, BpB#())
 ERASE BpB#
 PRINT #14, ""

 IF (kEqu% > nUnk%) THEN PRINT #14, "[B]*[Bp] = not [I]"
 IF (kEqu% < nUnk%) THEN PRINT #14, "[B]*[Bp] = [I] ?"
 DIM BBp#(kEqu%, kEqu2%)
 FOR K% = 1 TO kEqu% '[BBp]=[B]*[Bp]
 FOR k2% = 1 TO kEqu%
 FOR nm% = 1 TO nUnk%
 BBp#(K%, k2%) = BBp#(K%, k2%) + BZ#(K%, nm%) * Bp#(nm%, k2%)
 NEXT nm%
 NEXT k2%
 NEXT K%
 CALL PrintAY(kEqu%, kEqu2%, BBp#())
 ERASE BBp#

 ERASE BZ#
 ERASE AY#
 ERASE Bp#

 PRINT #14, "--- Exiting: kEquations <> nUnknowns ---"
END IF

PRINT #14, ""
PRINT #14, USING "Done: & & - closing MUSEOUT.TXT"; DATE$; TIME$
PRINT "Closing file 'MUSEOUT.TXT'."
PRINT USING "Done: & & Press escape."; DATE$; TIME$
CLOSE #14
END 'Program MUse.exe - subroutines follow:

REM ---
SUB ErrorEval (kEqu%, nUnk%, mCol%, LOut%, iAX1BZ2%)
 SHARED AiX#()
 SHARED AY#()
 SHARED BZ#()

 PRINT #14, "--- Entering Subroutine ErrorEval(): ---"
 PRINT #14, ""
 PRINT #14, "*** Answers & Error evaluation: ***"
 FOR L% = 1 TO LOut%
 PRINT #14, USING "Answers for column ##:"; L%
 FOR n% = 1 TO nUnk%
 PRINT #14, USING "Unknown###="; n%;
 PRINT #14, USING " #########.############"; AiX#(n%, nUnk% + L%);
 PRINT #14, USING " = ##.############^^^^^"; AiX#(n%, nUnk% + L%)
 NEXT n%
 PRINT #14, ""

Hyperspace Algebra Tools version 0.50 Page 43 of 54 September 14th, 2011

 PRINT #14, USING "Error evaluation for column ##:"; L%
 PRINT #14, "Equation: Ycomputed - Yin = Yerror"
 RMS# = 0#
 AbsMax# = 0#
 nAbsMax% = 0
 FOR K% = 1 TO kEqu%
 PRINT #14, USING "####:"; K%;
 FitValue# = 0#
 FOR n% = 1 TO nUnk%
 SELECT CASE (iAX1BZ2%)
 CASE IS = 1 'kEquations = nUnknowns
 FitValue# = FitValue# + AY#(K%, n%) * AiX#(n%, nUnk% + L%)
 CASE IS = 2 'kEquations <> nUnknowns
 FitValue# = FitValue# + BZ#(K%, n%) * AiX#(n%, nUnk% + L%)
 END SELECT
 NEXT n%
 PRINT #14, USING " ######.#########"; FitValue#;
 SELECT CASE (iAX1BZ2%)
 CASE IS = 1 'kEquations = nUnknowns
 PRINT #14, USING " ######.#########"; AY#(K%, nUnk% + L%);
 FitValue# = FitValue# - AY#(K%, nUnk% + L%)
 CASE IS = 2 'kEquations <> nUnknowns
 PRINT #14, USING " ######.#########"; BZ#(K%, nUnk% + L%);
 FitValue# = FitValue# - BZ#(K%, nUnk% + L%)
 END SELECT
 PRINT #14, USING " ######.#########"; FitValue#;
 PRINT #14, USING " = ##.#########^^^^^"; FitValue#
 IF ABS(AbsMax#) < ABS(FitValue#) THEN
 AbsMax# = FitValue#
 nAbsMax% = K%
 END IF
 RMS# = RMS# + FitValue# * FitValue#
 NEXT K%
 RMS# = SQR(RMS# / kEqu%)
 PRINT #14, ""
 PRINT #14, " ";
 PRINT #14, USING "RMS error= ######.#########"; RMS#;
 PRINT #14, USING " = ##.#########^^^^^"; RMS#
 IF nAbsMax% > 0 THEN
 PRINT #14, USING "####: "; nAbsMax%;
 PRINT #14, USING "AbsMax error= ######.#########"; AbsMax#;
 PRINT #14, USING " = ##.#########^^^^^"; AbsMax#
 END IF
 PRINT #14, ""
 NEXT L%
 PRINT #14, "--- Exiting Subroutine ErrorEval(): ---"
 PRINT #14, ""
END SUB 'ErrorEval()

Hyperspace Algebra Tools version 0.50 Page 44 of 54 September 14th, 2011

REM ---
SUB OverWriter (nUnk%, mCol%, AY#()) '[A:Y]->[Ai:X]
 PRINT #14, "--- Entering Subroutine OverWriter(): ---"
 PRINT #14, ""
 DIM nUsed%(nUnk%)
 DIM mUsed%(nUnk%)
 DIM SwapColumn#(nUnk%)
 DIM SwapRow#(mCol%)
 DIM Asto#(nUnk%, nUnk%) 'Copy of [A] for evaluating [Ai]*[A], etc.

 nUnk2% = nUnk% 'avoids "variable ailiasing"
 ' in calls to subroutines.
 PRINT #14, "Set the noise floor:"
 ValMin# = ABS(AY#(1, 1))
 FOR n% = 1 TO nUnk%
 nUsed%(n%) = -n%
 mUsed%(n%) = -n%
 FOR m% = 1 TO nUnk%
 IF ValMin# < ABS(AY#(n%, m%)) THEN
 ValMin# = ABS(AY#(n%, m%))
 END IF
 NEXT m%
 FOR n2% = 1 TO nUnk% 'Copy [Asto] <- [A]
 Asto#(n%, n2%) = AY#(n%, n2%)
 NEXT n2%
 NEXT n%
 ValMin# = ValMin# / 100000000#
 PRINT #14, USING "ValMin=######.###############"; ValMin#
 PRINT #14, ""

 DetProduct# = 1#

 FOR NextRowNom% = 1 TO nUnk% 'Solving isn`t necessarily sequential.
 PRINT #14, " *** Top of the Loop: Iteration ";
 PRINT #14, USING "##:"; NextRowNom%;
 PRINT #14, " ***"
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())
 REM Find the largest unused coefficient:
 ValMax# = ValMin#
 nRowMax% = 0
 mColMax% = 0
 FOR nRowTest% = 1 TO nUnk%
 IF (nUsed%(nRowTest%) < 0) THEN
 FOR mColTest% = 1 TO nUnk%
 IF (mUsed%(mColTest%) < 0) THEN
 IF ABS(AY#(nRowTest%, mColTest%)) > ABS(ValMax#) THEN
 ValMax# = AY#(nRowTest%, mColTest%)
 nRowMax% = nRowTest%
 mColMax% = mColTest%
 END IF
 END IF '(mUsed%(mColTest%)<0)
 NEXT mColTest%
 END IF '(nUsed%(nRowTest%)<0)
 NEXT nRowTest%
 IF (nRowMax% = 0) THEN
 PRINT "The input equations are linearly dependent."
 PRINT #14, "The input equations are linearly dependent."
 PRINT #14, " Negative indices indicate dependent rows & columns."

Hyperspace Algebra Tools version 0.50 Page 45 of 54 September 14th, 2011

 PRINT #14, "Overwriter inverse zero-ing uses the negative indices."
 PRINT #14, "Salvaging a linearly-independent subset of [Ai] as [Ad]:"
 FOR n% = 1 TO nUnk%
 IF (nUsed%(n%) < 0) THEN
 FOR m% = 1 TO mCol% '...eliminating linearly dependent rows
 AY#(n%, m%) = 0#
 NEXT m%
 END IF '(nUsed%(n%)<0)
 IF (mUsed%(n%) < 0) THEN
 FOR n2% = 1 TO nUnk% '...eliminating linearly dependent columns
 AY#(n2%, n%) = 0#
 NEXT n2%
 END IF '(mUsed%(n%)<0)
 NEXT n%
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())
 GOTO 90
 END IF '(nRowMax%=0)

 PRINT #14, USING "The abs(max)= #######.####"; ValMax#;
 PRINT #14, USING " at n=##, m=##"; nRowMax%; mColMax%
 DetProduct# = DetProduct# * ValMax#
 iRank% = NextRowNom%
 PRINT #14, USING "Det.Product =############.######"; DetProduct#

 NextRow% = mColMax% 'This is the row to be used.
 nUsed%(nRowMax%) = -nUsed%(nRowMax%)
 mUsed%(mColMax%) = -mUsed%(mColMax%)
 nVarsUsed = NextRowNom%
 nPivot% = mUsed%(mColMax%) '<- Overwritten row.
 mPivot% = nUsed%(nRowMax%) '<- Overwritten column.
 IF (ValMax# <> 1#) THEN
 PRINT #14, USING "Divide row ## by ########.####:"; nRowMax%; ValMax#
 FOR m% = 1 TO mCol%
 AY#(nRowMax%, m%) = AY#(nRowMax%, m%) / ValMax#
 NEXT m%
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())
 ELSE
 PRINT #14, "No division needed - step skipped."
 PRINT #14, ""
 END IF '(ValMax#<>1#)

 IF (nRowMax% <> nPivot%) THEN
 PRINT #14, USING "Swap row ## with row ##:"; nRowMax%; nPivot%
 FOR m% = 1 TO mCol%
 A1# = AY#(nRowMax%, m%)
 AY#(nRowMax%, m%) = AY#(nPivot%, m%)
 AY#(nPivot%, m%) = A1#
 NEXT m%
 n% = nUsed%(nRowMax%)
 nUsed%(nRowMax%) = nUsed%(nPivot%)
 nUsed%(nPivot%) = n%
 REM PRINT #14, "nUsed%=", nUsed%(1), nUsed%(2), nUsed%(3)
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())
 ELSE
 PRINT #14, "No row swapping needed - step skipped."
 END IF '(nRowMax%<>nPivot%)

Hyperspace Algebra Tools version 0.50 Page 46 of 54 September 14th, 2011

 IF (mColMax% <> mPivot%) THEN
 PRINT #14, USING "Swap column ## with column ##:"; mColMax%; mPivot%
 FOR n% = 1 TO nUnk%
 SwapColumn#(n%) = AY#(n%, mColMax%)
 AY#(n%, mColMax%) = AY#(n%, mPivot%)
 AY#(n%, mPivot%) = SwapColumn#(n%)
 NEXT n%
 m% = mUsed%(mColMax%)
 mUsed%(mColMax%) = mUsed%(mPivot%)
 mUsed%(mPivot%) = m%
 REM PRINT #14, "mUsed%=", mUsed%(1), mUsed%(2), mUsed%(3)
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())
 END IF '(mColMax%<>mPivot%)

 REM eliminate the projected components from all the other equations:
 PRINT #14, ""
 PRINT #14, USING "Subtract iPivot row ## from the other rows"; nPivot%;
 PRINT #14, " using a multiplier:"
 FOR m% = 1 TO mCol%
 SwapRow#(m%) = AY#(nPivot%, m%)
 NEXT m%
 FOR n% = 1 TO nUnk% 'Clear the space for the overwrite:
 SwapColumn#(n%) = AY#(n%, mPivot%)
 NEXT n%
 FOR n% = 1 TO nUnk%
 IF (n% <> nPivot%) THEN
 PRINT #14, USING "Reduce row ## "; n%;
 PRINT #14, USING " using multiplier #####.####: "; SwapColumn#(n%)
 FOR m% = 1 TO mCol%
 AY#(n%, m%) = AY#(n%, m%) - SwapColumn#(n%) * SwapRow#(m%)
 NEXT m%
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())
 END IF '(n%<>nPivot%)
 NEXT n%
 PRINT #14, USING "and OverWrite the inverse in column ## "; mPivot%
 FOR n% = 1 TO nUnk%
 AY#(n%, mPivot%) = AY#(n%, mPivot%) - SwapColumn#(n%) / ValMax#
 NEXT n%
 AY#(nPivot%, mPivot%) = 1# / ValMax#
 PRINT #14, " [A:Y] becomes:"
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())
 NEXT NextRowNom%

90 PRINT #14, "*** Solver's results: ***"
 PRINT #14, USING "Determinant =############.######"; DetProduct#
 PRINT #14, USING " Rank =############"; iRank%
 CALL PrintowAY(nUnk%, mCol%, AY#(), nUsed%(), mUsed%())

 PRINT #14, "OverWriter Check: [Ai]*[A] = [I] ?"
 DIM AAi#(nUnk%, nUnk2%)
 FOR n% = 1 TO nUnk% '[AiA]= [A]*[Asto]
 FOR m% = 1 TO nUnk%
 FOR nm% = 1 TO nUnk%
 AAi#(n%, m%) = AAi#(n%, m%) + AY#(n%, nm%) * Asto#(nm%, m%)
 NEXT nm%
 NEXT m%
 NEXT n%
 CALL PrintowAY(nUnk%, nUnk2%, AAi#(), nUsed%(), mUsed%())
 ERASE AAi#

Hyperspace Algebra Tools version 0.50 Page 47 of 54 September 14th, 2011

 PRINT #14, ""
 PRINT #14, "OverWriter Check: [A]*[Ai] = [I] ?"
 DIM AiA#(nUnk%, nUnk2%)
 FOR n% = 1 TO nUnk% '[AAi]= [Asto]*[A]
 FOR m% = 1 TO nUnk%
 FOR nm% = 1 TO nUnk%
 AiA#(n%, m%) = AiA#(n%, m%) + Asto#(n%, nm%) * AY#(nm%, m%)
 NEXT nm%
 NEXT m%
 NEXT n%

 CALL PrintowAY(nUnk%, nUnk2%, AiA#(), nUsed%(), mUsed%())
 ERASE AiA#

 ERASE nUsed%
 ERASE mUsed%
 ERASE SwapColumn#
 ERASE SwapRow#
 ERASE Asto#
 PRINT #14, "--- Exiting Subroutine OverWriter(): ---"
 PRINT #14, ""
END SUB 'OverWriter()

REM ---
SUB PrintAY (nRows%, mCols%, AYsee#())
 PRINT #14, " ";
 FOR n% = 1 TO nRows%
 IF (n% <= mCols%) THEN PRINT #14, USING "###### "; n%;
 NEXT n%
 PRINT #14, " "
 FOR n% = 1 TO nRows%
 PRINT #14, USING "###"; n%;
 FOR m% = 1 TO mCols%
 PRINT #14, USING "######.######"; AYsee#(n%, m%);
 NEXT m%
 PRINT #14, ""
 NEXT n%
 PRINT #14, ""
END SUB 'PrintAY()

REM ---
SUB PrintowAY (nRows%, mCols%, AYsee#(), nUsed%(), mUsed%())
 PRINT #14, " ";
 FOR m% = 1 TO nRows%
 IF (m% <= mCols%) THEN PRINT #14, USING "###### "; mUsed%(m%);
 NEXT m%
 PRINT #14, " "
 FOR n% = 1 TO nRows%
 PRINT #14, USING "###"; nUsed%(n%);
 FOR m% = 1 TO mCols%
 PRINT #14, USING "######.######"; AYsee#(n%, m%);
 NEXT m%
 PRINT #14, ""
 NEXT n%
 PRINT #14, ""
END SUB 'PrintowAY()

End of Appendix B: Matrix Solver Details

Hyperspace Algebra Tools version 0.50 Page 48 of 54 September 14th, 2011

 Appendix C: Hat.exe - Use
 Limited to A Matrix-based Polynomial Solver for now.

http://ftp.setterholm.com/PseudoInverse/AppendixC includes:

08/29/2011 11:42 AM 586,240 HAT.exe - the program.

08/29/2011 11:03 AM 5,823 HatIn.csv - the input.
 Look at ‘HatIn.csv’ in an ASCII text editor to get a sense of how input datasets are organized.
 Hat.exe reads only your first (top) dataset in HatIn.csv.

08/29/2011 11:42 AM 30,007 HatReport.txt – the detailed output.
 ‘HatReport.txt’ provides a good example of what ‘Hat.exe’ can do in the blink of an eye.

08/29/2011 11:42 AM 1,989 HatOut.csv - reorders input data
 Look at ‘HatOut.csv’ in a spreadsheet program.

08/29/2011 09:49 AM 225 _Run-Hat.bat
 For use by DOS-literate people. Launches the program
 & follows up by displaying HatReport.txt in the screen window.

The opening disclaimers of “HAT.exe” version 0.40 – is an unpleasant read:

 HAT.exe is an experimental piece of scientific software.
 > A sample`HatIn.csv`file was available with this software.
 with several datasets therein.

 > Presently, ONLY POLYNOMIAL-BASED SOLVING IS ACCESSIBLE.
 `HatReport.txt` has the useful results.
 `HatOut.csv` is for-now only useful for re-ordering data.

 Use `MUse.exe` for non-poly problems (See Appendix B).

 HAT reads only the first (topmost) dataset.
 > The manner in which the software might respond to errors
 in your `HatIn.csv` input file is unknown.
 > The program was created on an AMD Athlon 64 processor in
 a Windows XP environment using Absoft`s ProFortran 9.0.
 Whether or not this program will run properly on your
 particular computer is unknown to me.
 > Although not intentional on my part, there may be errors
 in the computational results.

 > THIS PROGRAM IS POSTED ON THE WEB
 WITHOUT GUARANTEES OR WARRANTIES OF ANY KIND,
 including, but not limited to,
 fitness for any particular purpose.

 > If YOU ACCEPT ALL THE RISK(S) of running the program:
 type A to accept the risk(s) and continue.
 Otherwise, type Q to quit. :

End of Appendix C: Hat.exe - Use

Hyperspace Algebra Tools version 0.50 Page 49 of 54 September 14th, 2011

Appendix P: Philosophy
Entry #1: (Referenced on page 9)
Without a hyper-dimensional way of understanding how “unknowns” relate to “observations”, it’s easy
to be close-to-clueless about how “real world” problems might be solved. Science, Math, and
Engineering education & experience have produced people who, by intense focus in understanding their
disciplines, were/are profoundly capable problem solvers. If the world’s social problems are going to be
solved peacefully, then humanity needs people who are intensely focused problem solvers within the
various social disciplines...“Your mission – should you choose to accept it – “.

Trusting the invisible mental gears of “the next politician” will not take the world to social harmony.
We need transparent governance decision models. Living under a tyrant, 10 years can seem like an
eternity – if you’re lucky enough to survive. Solve problems now, while you have a chance, or pay for
not solving them later. Allowing me some poetic license: “There are only two kinds of people:
Engineers & Victims.” HAT lies at the beginning of a path to learning how to create transparent
governance decision models which may benefit almost everyone.

Somebody – anybody – anywhere in the world - please go for it!

Entry #2: (Referenced on page 24)
On the social side, I consider it likely that pseudoinverse system analysis will be part of the
analytical mix that creates transparent governance models, helping in innumerable ways,
including:

1. By the comparatively simple and robust access that it offers for exploring parameter
identifications in high-dimensional non-linear problem spaces.

2. By de-mystifying the very idea of being able to find accurate answers in hyperspaces. Citizens
the world over may begin to expect, if not demand, that presently-funded experts begin to provide stable,
long-term solutions to the governance problems that are theirs to solve, particularly solutions to the
social problems that have plagued humanity for hundreds of years. Trusting the invisible mental gears
of “the next politician” has not and never will take the world to enduring social harmony. Let’s try
to create transparent governance decision models. Maybe the models won’t work either, but an old
Army manual characterized plans in a thoughtful way:

“A bad plan is better than no plan.”

3. By recognizing that every family in America is a “special interest group” which should have an
equal amount of weight in the search for balanced congressional “answers”. “The average
American family” is falling apart before our very eyes; do the majority of our mentally-unaided
politicians even dare to care? For the time being: greed rules at the national level, eh?

The idea of “a transparent ethical compass” that works in hyperspace has allure.

4. The corruption of human minds by wealth & power is a commonly recognized pitfall;
trusting “invisible mental gears” as “leadership mechanisms” = a bad plan. “Evolving
transparent mitigations of human pitfalls” is a grand vision.

Hyperspace Algebra Tools version 0.50 Page 50 of 54 September 14th, 2011

5. An integral part of achieving transparent governance involves arriving at a shared
comprehension of the rules that constrain and empower us – i.e. our Laws. Bright and
ambitious young Americans have been drawn to the rules like a professional magnet for
scores of years, but a significant fraction of lawyers resemble loose cannons rolling
around the deck of a ship, contributing – in a major way – to financial uncertainties and
financial losses for the rest of society. There’s no good reason why “a nation’s rules”
should be the foundation of widespread parasitic professional conduct.

6. More dimensions are involved in the tradeoffs of governance decisions than any one
mind can intuitively harmonize. Hyperspace math, in various forms, will aid our shared
discernment. This document is a piece of the puzzle. As one example of other various
forms of high-dimensional mathematics: Linear Programming is a mathematical tool
used to efficiently allocate manufacturing resources within an enterprise.(See Wikipedia.)

7. Both eloquent and “invisible” intentions led to the American Civil War in 1861; the
speeches and writings of Thomas Jefferson, America’s third President, come to mind.
Jefferson was the philosophical guiding light of the Confederacy during the war, but,
none-the-less, the Jefferson Memorial in Washington D.C. stands as a national monument
to his eloquence and influence. Even after giving our third President the benefit of the
doubt - that he meant well - if there need be proof that “great speeches”, and/or
“great politicians” are a suspect means of assuring social harmony, Thomas
Jefferson’s example provides the proof. Adolf Hitler also delivered “great speeches” in
his day, but events subsequently revealed Hitler’s “invisible” intentions, which
harmed/killed millions of people.

8. Years ago someone concluded that: ‘The purpose of companies is to utilize people’s
strengths and make their weaknesses irrelevant.’

Here’s a candidate statement of purpose:
“The purpose of transparent governance is to provide a shared & predictable
political framework within which individuals and organizations can plan for the
future, and to instruct our political leaders in how our society presently functions.”

It remains to be seen whether or not transparent governance can be achieved.
Deciding clearly: “What is us.” and “What is not us.” will be difficult.

In systems with many dimensions, gems are the neighbors of noise.
It’s no wonder that “invisible mental gears” are so challenged by reality.

End of Appendix P: Philosophy

Hyperspace Algebra Tools version 0.50 Page 51 of 54 September 14th, 2011

References & Acknowledgements:

“A First Course in Linear Algebra” by Daniel Zelinsky, Academic Press, 1973.
This is an ideal textbook for people who prefer to learn math using intuition and examples.

The Flight Simulation Engineers at McDonnell Douglas, St. Louis (1976-1978).
Within the simulation group, extremely efficient codes for solving problems 20 times a second were the-
order-of-the-day; everyone helped everyone else become more skilled at efficient problem solving.
Within that talented group of people, there seemed to be no lower limit on how compact source codes
could become, and there seemed to be no lower limit on how quickly a given problem could be solved…
when given further thought.

Honeywell’s Systems & Research (S&RC), Minneapolis (1978-1984).
 (at Ridgway Parkway)
Honeywell had a building full of multi-disciplinary experts who were as collegial as the flight
simulation engineers at McDonnell Douglas. Within S&RC, Dr. Gunter Stein taught me that:

[A]-P= ([A]T
* [A])-1

* [A]T

I knew, the instant that Gunter wrote down the equation, that my professional life had just experienced a
major empowerment. (I had seen pseudoinverse being used in a very simple control system solution at
McDonnell Douglas, but hadn’t begun to grasp the scope of the subject.)

Absoft Corporation’s ProFortran 9.0 & William Mitchell’s F90GL.
For the last seven years I’ve programmed using Absoft’s version 9.0 Fortran compiler and the OpenGL
(graphics) interface to Fortran provided by Dr.William Mitchell of NIST. The stability of the
programming environment and the power of the graphics are a marvel. Bravo.

~Apologies:
1. I haven’t been trained as a teacher, so knowing “how to teach” isn’t my specialty. I suggest,
however, that teaching can be parsed into two subsets: “How to Teach” and “What to Teach”.
Consider this paper an exposition on “What to Teach” to empower bright 9th graders to progress into
hyperspace analytics. I invite anyone to figure out “how to teach” the material; I would enjoy the
opportunity to help with the task. (The source codes and examples in Appendices A and B reveal the
mechanics of the computations described on pages one through nine of this document.)

2. Pseudoinverse System Analysis isn’t part of HAT because I’m not aware of how to exercise an
(your) externally-defined system simulation model – efficiently - from within “HAT.exe”

3. Almost no visualizations are included in this paper, despite having created quite a few (each of
which made little intuitive sense to me). In general, many real problems naturally lend themselves to
visualizations - demonstration of results in a visual context. Visualizations easily access intuition,
whereas numbers alone are, at best, more narrowly intuitive. Strive to have a personal programming
environment that allows you to code your own powerful algorithms and to create your own first-
rate 3-D (stereo) dynamic graphic visualizations . Visually-based analytical exploration is a hoot!
“Homogeneous Transforms” (4x4 matrices with special properties) are the key to understanding the math of
perspective & 3-D visualization, because you can then efficiently do projection; This is yet another example of
brilliant results produced by scientists whose names may be unfamiliar to you. Expanding homogeneous
transforms into hyperspace is likely to be fruitful; e.g.: with some thought, 4-D spaces can probably be projected
at will onto 3-D subspaces for stereo viewing.

Hyperspace Algebra Tools version 0.50 Page 52 of 54 September 14th, 2011

Employment sought:

I’m an unemployed STEM professional looking for paid work – working for everyone
in the meantime, at my own expense… simplifying technical understandings to their
essentials and providing thoughtful alternatives to “how we do business”. Patents - ref:
www.uspto.gov - advanced search: IN/Setterholm-Jeffrey-M

My contact information:
Jeffrey M. Setterholm

8095 230th St. E.
Lakeville, Minnesota 55044-8287

USA

This document has a wealth of insights about “what to teach”
to mathematically empower analytically-inclined young people.

“How to teach” these insights is now the greater challenge.

Review of Contents Page(s)

An example algebra problem (#1) 1
Hyperspace explained 1-2
Inverse: [A] the [Ai] perepndiculars 2
Algebra & Linear Algebra [A:Y:I] 3, & Appendix A
 -> [I:X:Ai]
computing [X]=[Ai]*[Y] 3
 - and the symbolic matrix*vector multiply "
The Identity matrix [I] 4
 - an example: [I]=[Ai]*[A] "
Matrix multiplication
 - the symbolic matrix*matrix multiply 4
 - dimensional consistency "
 - BASIC source code "
 - use 64-bit floating point numbers "
Pseudoinverse
 - defined 5
 - Transpose BASIC source code "
 - example problem (#2) 6
 - inversion isn't necessary to solve "
[A] coefficients: numerical partial derivatives
 - Units- opening discussion 6
 - expressing rates of change 7
 - derivatives "
 - partial derivatives "
Change of notation: to [Y]=[A]*[X] 7
Units in more detail

Hyperspace Algebra Tools version 0.50 Page 53 of 54 September 14th, 2011

 - a fanciful set of units 8
 - reciprocal & transpose of units in [Ai] "
 - maintaining consistency of units "
OverWriting matrix inverters
 - discarding expected information 8
 - the OverWriter's output 9, & Appendix B
Pseudoinverse
 - numerical example (#2, cont'd.) "
 using the OverWriter
 - [X]=[Bp]*[Y] Yes "
 - [I]=[Bp]*[B] Yes "
 - [I] is unitless "
 [I]=[B]*[Bp] No 9-10
 - loss of dimensions caused by ([Bt]*[B]) 10
 - introducing noise into [Y] "
 - [Bp] unaffected by output values "

Computing Polynomial fits
 - a generic use of the hyperspace algebra 10
 - dataset size considerations "
 - example problem (#3 - expanding on #2) 11, & Appendix C...
 - "order" of polynomials described " "HatReport.txt"
 - [C:Z] [C] is the numerical partial 12
 of the polynomial coefficients
 - exponential notation used here "
 - explicitly computing one term of [C] "
 - Adding noise to Y(5) 13
 - revised coefficients "
 - output errors after noise is added "

HAT.exe
 - input data- in a spreadsheet 14
 - exported as a .csv file 15
 - improve .csv readability "
 - setting up the .csv file 16
 - example header change "
 - resulting "HatOut.csv" 16-17

Data Scaling
 - gain & bias 17
 - Pass 1- uniform bounding GB1 "
 - equations derivation "
 - un-scaling- more difficult 17-18
 - numerical example using problem #3
 [B:Y] after GB1 18
 - [A]=[Ct]*[C] upper left corner "
Intuition in hyperspace
 - "The determinant" as a signed hypervolume 18 & 19
 - the value is easy to compute 19

Hyperspace Algebra Tools version 0.50 Page 54 of 54 September 14th, 2011

 - zero: implies linear dependence "
 a more powerful inverter is needed.
 - The "vector dot product"
 -"angles between vectors" 18 & 19
 - each output element of a multiply 19
 - "Length"- using the vector dot product "
Data Scaling, cont’d.
 - Pass 2- pure gain adjustment using G2 19
 - numerical values of G2 20
 - [A]=[Ct]*[C] upper left corner "
 - angular interpretation "
 - The determinant vs noise "
 - and collapsed subspaces 21

Reviving Collapsed Solutions
 - dealing with linear dependence 21
 - numerical example (#4 - #1 modified) "
 - interpreting [Ai]*[A] 22
 - interpreting [A]*[Ai] "
 - OverWriter's equivalent output "
 - at least two "inverses" exist "

Signals vs. Noise - a knotty problem in hyperspace 22-23

Pseudoinverse System Analysis
 - applied to sensor calibration 23
 - additional concepts needed "
 - Output of aa simple numerical example 24

Appendix A: An Introductory Matrix Solver
 - "M1UseOut.txt" 25-27
 - the input dataset 27
 - "M1stUse.bas" - the BASIC source code 28-31
 - "MUseIn.txt" - the input dataset
 for both "M1stUse.bas" & "MUse.bas" 32-33
Appendix B: Matrix Solver Details
 - "MUseOut.txt 34-37
 - "MUse.bas - the BASIC source code 38-47
Appendix C: Hat.exe - Use 48
Appendix P: Philosophy
 - Entry #1 (Referenced on page 9) 49
 - Entry #2 (Referenced on page 24) 49-50
References & Acknowledgements: 51
 & ~Apologies "
Employment sought: 52

This concludes Hat.pdf, version 0.50

