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Solvefor A, B, & C in the example algebra problem: Qut put#1  Hints:
Equation#l: 1.00* A+ 0.20 * B+ 0.30* C= 1.10 A= 1.0
Equation#2: 0.30* A+ 1.00 * B+ 0.10* C= 2.20 B= 2.0
Equation#3: 0.10 * A+ 0.20 * B+ 1.00 * C = -0.50 c=-10
Thi s probl em has: three equations: (K=3)
wi th one output: (L=1)

in three unknowns: A B, & C (N=3)

HAT is a software tool for people (who already know Algebra 1) to begin solving:

K-eguations, with
L -outputs, in
N-unknowns ... for K >=N
(i.e.real-world algebra problems.).

For arbitrary problems with more than four-equations in four-unknowns, it's a waste of time to use
pencil & paper to arrive at accurate numerical solutions, whereas computers can do the legwork in the

blink of an eye... once the equations are inside the computer in a well-structured way.

Thistoal is“a wdl-structured & automated way”
of having your computer solve
K-equations with L-outputs in N-unknowns.

This tool supports solving problems with many- more-than-three unknowns. Each unknown creates/adds
another “dimension” to the “space” in which the problem will be understood and solved; hence having
more than three unknowns ... morethan “a 3-D problem”... creates a “ hyperspace” (i.e:>3-D). These

algorithms work in hyperspace as well as within the familiar territory of “Algebra 1 land”.
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This tool is based onthe subject: linear algebra; if you liked Algebra 1 and were good at it, you may be
amazed by the empowerments that linear algebra provides... I'm still amazed, after 35 years of using
linear algebra to solve complex applied mathematics problems.

Y ou've probably watched enough science fiction videos to believe that: hyperspace can be an extremdy
complicated place. Even within introductory linear algebra, there are theoretical results whose simple 3-
D examples defeat my intuition. HAT provides you with a carefully chosen, powerful, & relatively
simple path through a complicated forest. So: mastering HAT will leave you far from being “an expert
at linear algebra” — but you' |l be analytically empowered in some marvel ous ways.

“Matrix Inversion” isthe key piece; here' salook at a matrix inverter’s results for the example:
Matrix [A] =

Ea#l: |1.00, 0.20, 0_.30
Eq#2: |0 30 o0, 0,10

1
Eq#a: |0.10, 0.20, 1.00

-0, F16681, 1.065%34, -0.010989%
=0, 043856, —0.197802, 1.032067

+5

The inverse is matrix [&]-! =
Tl 076923, -0_ 153846, =0 3c155:]

Farpwl
ParpHl :
ParpH3

The coefficients of the three equations go into the matrix inverter, and three scaled perpendicular
directions come out as “answers’. Perpendicular to what? ... in each case, perpendicular to the
coefficients of the other two equations. These scaled directions are entirely independent of what the
outputs are equal to; far more powerfully — these three “ perpendiculars’ provideall the solutions for
all the outputs that the three equations might be equal to. And matrix inversion works the same way
in hyperspace... only human intuition is challenged. Perhaps you're starting to grasp why it might “ be
hip to (be ableto) find perp.” HAT does that, and more.

The way you solved equations in Algebra 1 took you half way down the road to computing inverses.
Here' sthe output of a“BASIC” program that does the algebra; watch it go:

Hyperspace Algebra Tools version 0.50 Page 2 of 54 September 14", 2011



---------- al gebra ---------|- linear algebra -|
Exanpl el. Bas 2011.07. 13 JMS

# of equations # of unknowns # of outputs
3 3 4
Equations: Reduce to ldentity: Qutput#1: Append an identity matrix:
1. 000000 0. 200000 0. 300000 : 1.100000 1. 000000 0. 000000 0. 000000
0. 300000 1. 000000 0.100000 : 2.200000 0. 000000 1. 000000 0. 000000
0.100000 0. 200000 1.000000 : -0.500000 0. 000000 0. 000000 1. 000000

Row reductions “elinnate” one variable at a time (A then B, then C):
End of step 1:

> 1.000000 0. 200000 0.300000 : 1.100000 1. 000000 0. 000000 0. 000000
0. 000000 0. 940000 0.010000 : 1.870000 -0.300000 1. 000000 0. 000000
0. 000000 0. 180000 0.970000 : -0.610000 -0.100000 0. 000000 1. 000000
End of step 2:
1. 000000 0. 000000 0.297872 : 0.702128 1.063830 -0.212766 0. 000000
> 0.000000 1. 000000 0.010638 : 1.989362 -0.319149 1.063830 0. 000000
0. 000000 0. 000000 0.968085 : -0.968085 -0.042553 -0.191489 1. 000000
End of step 3: ldentity matrix: Answer#1: & Perp (The inverse) pl ops out:

1. 000000 0. 000000 0. 000000 A= 1.000000 1.076923 -0.153846 -0.307692

0. 000000 1. 000000 0. 000000 B= 2.000000 -0.318681 1. 065934 -0.010989
> 0.000000 0. 000000 1. 000000 C= -1.000000 -0.043956 -0.197802 1. 032967
Done. ( visualized on page 2 )

So, by simply appending an “identity matrix” as extra “output” columns (read more about the “identity
matrix” on the next page.), the algebraic solution process yields the full inverse matrix! Finding
perps in hyperspace is quite straightforward... but the process is tedious, error prone, boring, &
inefficient when done by hand (for al but simple problems).

My first three students had difficulty understanding how to replicate the algebra solution above, and my
guidance to them was unclear. Appendix A (pages 5-33) has the step-by-step introductory matrix
solver details & the solver’s BASIC source code; see the details there.

On the preceeding page | claimed that the inverse providesall the solutions. As an example: multiplying
the inverse matrix times the Output#1 vector yields the Answer#1 vector. As follows:

Names Answer#l Theinverse Output#1
A= ] 1.000000 | | 1.076923 -0.153846 -0.307692 | | 1.100000 |
B= | 2.000000 | = |-0.318681 1.065934 -0.010989 | * | 2.200000 |
C= | -1.000000 | | -0.043956 -0.197802 1. 032967 | | -0. 500000 |

& here’s the sanme multiply using synbols instead of nunbers:

Vect or - out = Mat ri x#1 * Vect or #2
|(j*a + m'b + p*c)| I i, m p I | a |
| (k*a + n*b + g*c)| = | K, n, q | * | b |
| (I *a + o*b + r*c)| | |, o, r | | ¢ |

You can easily check that the nuneric & synbolic results agree.
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“Identity matrices’” (="1” or [I]) generdlize “1.0” into hyperspace. |I's always have exactly as many
rows as columns, with 1.0’s along the diagonal and 0.0's everywhere else. To understand more clearly,
consider that, in simple agebra: 1.0*X = X, multiplying by 1.0 doesn't change the value of a number.
In the same way, multiplying by | doesn’t alter the hyperspace that you're working in. | isa richer
concept than “1.0”; not only are values preserved, but the inter-dimensional relatiorships are all
preserved as well (up to the number of dimensions that | has). To aid your understanding, consider the

matrix multiplication [Ai]*[A]: [Ai] = theinverse of [A] =[A]™.

[1] = [Al] * [ Al
|1.0 0.0 0.0 | 1.076923 -0.153846 -0.307692] | 1.00 0.20 0.30]
[0.O 1.0 0.0] =] -0.318681 1.065934 -0.010989] * | 0.30 1.00 0.10]
|0.0 0.0 1.0] | -0.043956 -0.197802 1.032967] | 0.10 0.20 1.00|
& the sanme nmultiply using synbols instead of nunbers...

Mat ri x- out = Matrix#1l * Matrix #2
| (j *a+ntb+p*c), (j *d+mre+p*f), (j *g+mh+p*i) | | j. mpl | a d ¢
| (k*a+n*b+g*c), (k*d+n*e+q*f), (k*g+n*h+q*i)| =] k, n, q| * | b, e, h|
| (I *a+o*b+r*c), (I *d+o*e+r*f), (I *g+o*h+r*i)| | I, o, r| | c, f, i

For any choice of output#'s or answer#'s, entire (hper)spaces are mapped back to themselves, in
both directions, up to the number of dimensions that the square matrix | has. Division by [A] is not
defined; multiplying by [Ai] is as close as you can get, and has much of the same flavor.

For this example problem ( but not always true):

Qut put #1= [ Al *Answer #1 & Answer #1= [Ai] *CQut put #1
Answer #1=[ Al ] *[ A] *Answer #1 & Qut put #1=[ A] *[ Ai ] * Qut put #1
Answer #1= [1] *Answer#1l & Qut put#1= [1] *Qut put #1

The vector/matrix#1 (on the left) must have exactly as many columns as the vector/matrix#2 (on the
right) has rows; otherwise, the multiplication is undefined. The “arswer” vector/matrix has the number
of rows of #1 and the number of columns of #2.

Let : Nt ot = nunber of rows of #1
NM ot = nunber of colums of #1 = nunber of rows of #2
Mot = nunber of columms of #2

The “Matrix & vector nultiply” code can be witten as:

Di m Mat VecQut ( Ntot, Mot) <-This BASI C program does matrix nultiplies.
Di m Mat Vec1( Nt ot , NM ot ) <- ..and the values have been put in
Di m Mat Vec2( Nmot, Mot) <- ..and the val ues have been put in
For N=1 to Ntot
For MF1 to M ot
Mat VecQut (N, M) =0.

For NMEL to NM ot #1 #H2
Mat VecQut (N, M) =Mat VecOut (N, M +Mat Vec1( N, NM * Mat Vec2( NM M
Next NM
Next M
Next N

(If you're looking for a computing environment to create your own hyperspace algebra tools, seek floating point numbers
with a mimimum of 64-bits. (~ 12 significant digits). HAT uses 128-bit floats (~24 significant digits) which is called “quad
precision” for a 32-bit operating system.)
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A computationally minor (but brilliant & vastly empowering) step beyond what I've just shown you is
the “matrix pseudoinverse’ - another nifty twist on this primrose path through the complicated
forest of linear algebra which deas with having more equations than unknowns. Having more
equations than unknowns is quite common in real-life problems, and provides beneficial opportunities,
such as finding a “least-squares best fit” through many data points - which reduces the influence of
measurement noise on the solution values of the unknowns. But with more equations than unknowns,
[ A] isn’tinvertible by itself - because it’s not a square matrix.

Enter the magic of the pseudoinverse

Appendix B (pages 34-47) has the source code for “MUse.bas/.exe, a matrix Pseudolnverter,
OverWriter, & Linear Dependence eliminator. The output if MUse.exe is in “MUseOut.txt”; see the
appendix for more details. Systems with more or |ess equations than unknowns are referred to here as
[B:Z] inputs, which are morphed to [A:Y] prior to solving. Finding polynomial coefficients morphs
[B:Z] to->[C:Z] to->[A:Y]. [C] isoften anornsguare matrix.

Caling the non-square matrix of coefficients[ B] instead of [ A] , the pseudoinver se, denoted here
by [B] ” or [Bp]

[B]"=([B]"x [B] )* [B]"

where[B] " = the transpose of [ B] =[ Bt ], formed by interchanging the rows and columnsof [ B] .

When | said a “computationally minor step”, | wasn't kidding.
Forming the transposeis trivial; |etting [Bt] = the transpose of [B] = [B]" , in BASIC:
Dim B[ Ntot,Mot) <-This BASIC programcreates the transpose.
Dim Bt[ M ot, Nt ot]
For N=1 to Ntot
For MF1 to M ot

Bt (M N =B(N,M
Next M
Next N

The term “pseudoinverse” is somewhat confusing: the inversion is actually a regular inversion being
done to the square matrix [B] '+[B]. Hence the “pseudo-" part is the brilliant data compression technique
associated with pre-forming [B] '« [B] and then multiplying by [B]" after the inversion. Furthermore,
if you just “want the answers’ rather than “the space of al the possible answers’, the inverting of
[B]"+[B] isnot necessary!

So, whileit’struethat:  Unknown#l @ [rB * Output#l
we' |l directly solve: ( [B] [B] ) B]"« * Output#l] ) instead.
which solves just like: [ : Y ]

After that we'll look at the numerical values of [B]F, which are interesting in their own right if youwant
to understand what the numbers inside these matrices represent.
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Letting: [A] =[B] "~ [B]

and: Y =[B]" Output#l
the system: [A]l:Y row reduces to: [T :~Answer#1  without inversion.
This core [A] has the dimensiors by the unknowns irrespective of the number of equations.
Likewise, the system: [A]:Y:[Bt] row reduces to: [1]:~Answer#l: [B] °

Let’s go right to a numerical example — five equations in three unknowns.
Adding two equations to the opening example (by exercising: 1. 0* x+2. 0*y- 1. 0* z=Qut put )

A* B* C* Qut put#1 (=2
Eqn#1l: 1.0 0.2 0.3 = 1.1
Eqn#2: 0.3 1.0 0.1 = 2.2
Eqn#3: 0.1 0.2 1.0 =-0.5
Eqn#4: -1.0 0.3 0.2 =-0.6 <- added
Eqn#5: 0.5 -1.0 -0.3 =-1.2 <- added
[A] = [B] " [B] Y =[B]-Z
2.35 -0.28 0. 08 : 1.71
-0. 28 2.17 0.72 : 3.34
0. 08 0.72 1.23 : 0. 29

Simple algebra 1 row reductions solve for Answer#1.

Row r educti ons:

Step 1:

1. 000000 -0.119149 0. 034043 : 0. 727660

0. 000000 2.136638 0. 729532 : 3. 543745

0. 000000 0. 729532 1.227277 0. 231787
Step 2:

1. 000000 0. 000000 0.074725 : 0. 925275

0. 000000 1. 000000 0. 341439 : 1. 658561

0. 000000 0. 000000 0.978186 : -0. 978186
Step 3: [1] Answer #1

1. 000000 0. 000000 0. 000000 : 1. 000000 = A

0. 000000 1. 000000 0. 000000 : 2.000000 = B

0. 000000 0. 000000 1. 000000 : -1.000000 = C
Done

Inversion isn't necessary in order to solve more equations than unknowns! Of course, we're not finding
all the possible answers, only the particular Answer#1.

Where did Answer#1 come from? Understanding what the numbers in these matrices stand for may help
your intuitive grasp. When you study physics, you'll learn about the units of numbers and variables,
whichis the same idea.. For example, if you have an amount of money equa to 2, you don’'t know how
much money that isuntil it has a unit associated with it, for example 2 dollars, or perhaps 2 cents.

Hyperspace Algebra Tools version 0.50 Page 6 of 54 September 14", 2011



The units of the numbers inside the matrices are rates of change. Consider the equation of a straight line
on a 2-D graph often written:  Y=m*X+b where misthe dope of the line and b isthe Y- intercept
of the line with the graph’s Y-axis.

m isthe rate of change of Y with respect to changes in the value of X.

In calculus, rates of change of outputs with respect to a single input are called “derivatives’; derivatives
arethe local slopes; they’re “local” because, when lines are curved, the slopes change as the input value
moves along the curved line.

The two example problems have three “inputs’: A, B, & C, which I've referred to as “unknowns”. The
numbers which multiply A, B, & C are sopes of each output with respect to A, B, & C. Since there is
more than one input, there’'s more than one dimension in which © have a dope, in fact there are three
dopes associated with each equation. Calculus calls these slopes ‘partial derivatives’ because slopes
vary as the direction of measurement of slope varies. Hence:

The numbersinside [A] are numerical partial derivatives.

In algebra 1 as well, the equation coefficients are “ numerical partial derivatives’.

Changes of notation will smplify and compact all that follows:
In the spirit of:  Y=m*X+Db,
Single column case: Multiple column case:
1. Unknowns will henceforth be an X vector & unknowns will be an [X] matrix
2. Outputs will henceforth be a Y vector &, outputs will be a [Y] matrix.

So: X = Unknowns = Answer#1 ,and: Y = Qutputs = Qutput#l
X(1) = A = 1.0 Y(1) = 1.1
X(2) =B = 2.0 Y(2) = 2.2
X(3) = C =-1.0 Y(3) = -0.5
And the elenents of [A] are identified by their location in the
mat ri x: [Al=] A(1, 1) A(2,1) A(3,1) | A(n,m where
| A(1, 2) A(2,2) A(3,2) | n =[1, 2, or 3]
| A(1,3) A(2,3) A(3,3) | m=[1, 2, or 3]

After the changes of notation we can wite: Y=[A]*X

[ A} * Unknown#l
[Al * X

[Al=| 1.000000 0.200000 0.300000 | & Qutput#l

| 0.300000 1. 000000 0.100000 | now witten Y
| 0.100000 0. 200000 1. 000000 |

The units of each matrix number are the units that go out to the left divided by the units that come in
fromtheright (~ fromabove) during a matrix multiply. .. which “hasto be” because each number is a
slopein a particular direction. Assigning units to our first example is enlightening:
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Theunitsof Y and X are usualy suggested by the problem itself. Using the fanciful units:

Y(1)="w dget s” X(1) =" person” “/” = the division synbol
Y(2)="m st akes” X(2) ="hour” = “per”
Y(3)="triunphs” X(3)="dol l ar” ..Creates derivatives
Y = (Al * X

Then the units of the partial derivatives within [A] becone:
[Al= ] ( wdgets/person) ( w dgets/hour) ( w dgets/dollar) |
| (m stakes/ person) (m stakes/hour) (m stakes/dollar) |
| (triunphs/ person) (triunphs/hour) (triunphs/dollar) |

The units must remain consistent during mathematical operations; consider multiplies:

Y(1) wdgets = A(1,1) w dgets/person * X(1) person
+ A(1, 2) wi dget s/ hour * X(2) hour
+ A(1,3) widgets/dollar * X(3) dollar

Both inverse and pseudoinverse matrices have units that are reciprocal and transposed with respect to
the original matrix. That way the resulting units also make sense within multiplies. Units are consistent
inlinear algebra equations. Units offer an independent way to check equations for correctness.

The ideaof “units’ can be abstracted to the unspecified units of the symbols of the variables. So
the unitsof A(i,j) = the unitsof Y(i) / the units of X(j) and
theunitsof B(i,)) = theunits of Z(i) / the units of X(j).

------ adigression ------
There's a more compact way to compute and display matrix inversions. For the first example, draw X’'s
through the (unnecessary) columns that have NO unexpected information:

Equations: Reduce to Identity: Output#il: Append an identity matrix

1.000000 0.200000 0.300000 : 1.100000 oo ooo D000
0.300000 1.000000 0D.i00000 : 2.200000 a. oo i oo 0. oo
0.100000 0.200000 1.000000 : —0.500000 . oooao ruooo L ooo

Fow reductions “eliminate” one wvariable at a time (A, then B, then C):
End of =tep 1:

> aon O.200000 0.300000 : 1.100000 1.000000 (] NImn] L0100
0. oo 0.240000 0.010000 g 1.870000 -0.300000 1. oo w
Taooag O.1s0000 0.970000 : -0.610000 -0.,100000 L aoo Taoo0
End of step 2:
oo aooo 0.297572 : 0.702128 1.063830 -=-0.212766 oo
> 0. oo 1. oo D.DlDESB : 1.989362 -0.319149 1.063830 o. [u]n}
.Qooo 968085 : -0.968085 -0.042Z2E553 -0.191459 Juluiainl
End of step 3: Identlty matrix: Answer#l > PHIR {The inverse) plops out
oooog aoo [n]u]u)n] 1 000000 1.076923 -0.153846 -D0.307692
M M u]} B— 2.000000 -0.318681 1.065934 -0.010989
—1 000000 -0.043956 -0.197802 1.032967
DDnE
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Hence amatrix can overwrite itself in the course of being inverted; so input:

[Al: & Y
1. 000000 0. 200000 0. 300000 : 1.100000
0. 300000 1. 000000 0.100000 : 2.200000
0. 100000 0. 200000 1.000000 : -0.500000
Goes directly to output:
[A] ! & X
1.076923 -0.153846 -0.307692 : 1.000000
-0. 318681 1.065934 -0.010989 : 2.000000
-0.043956 -0.197802 1.032967 : -1.000000
HAT’ s inverter/solver isan overwriter. Appendi x B has BASIC OverWiter source code.

Let’s compute the full pseudoinverse[ B] ~© of the five-equation example problem using:
[B] "=([B “[B]) “[B]"

We alr have: Transposing [B] and treating itisa [Y] matrix:
[A]=[B] -[B]= & [Y]=[B] =

| 2.35-0.28 0.08/:] 1.00 0.30 0.10 -1.00 0.50 |
|-0.28 2.17 0.72|:] 0.20 1.00 0.20 0.30 -1.00 |
| 0.08 0.72 1.23/:] 0.30 0.10 1.00 0.20 -0.30 |

You can use the algorithm that solves the first example problem to find this pseudoinverse; here I'm
using the OverWriter because the notation is more compact:

[A]=([B][B])*= & [X =[B]"P= The full pseudoinverse =

| 0.438 0.082 -0.076| : |0.431337 0.205574 -0.016233 -0.428608 0.160012]
| 0.082 0.587 -0.349| : |0.094573 0.576854 -0.223428  0.024503 -0.441566|
|-0.076 -0.349 1.022| : |0.160488 -0.269741  0.944851  0.176135  0.004168|
Does X @ [B]P * 7Z? Yes.
| 1.000000| | 0.431337 0.205574 -0.016233 -0.428608 0.160012| | 1.10]
| 2.000000| = | 0.094573 0.576854 -0.223428 0.024503 -0.441566| * | 2. 20|
| -1.000000| | 0.160488 -0.269741 0.944851 0.176135 0.004168| |-0.50]

| - 0. 60|

| -1. 20|
Andthe unitsof B "(n, k) are: unitsof X(n) /unitsof Z(k)
Does[1] = [B] P * [B] ? Yes.
| 1.0 0.0 0.0] | 0.431337 0.205574 -0.016233 -0.428608 0.160012| 1. 00 0.20 0. 30|
| 0.0 1.0 0.0/ =| 0.094573 0.576854 - 0.223428 0.024503 - 0.441566] *| 0.30 1.00 0.10|
| 0.0 0.0 1.0/ | O.

1.00 0.30 0.20

|

160488 - 0.269741 0.944851 0.176135 0.004168| | 0.10 0.20 1.00|
|_
| 0.50 -1.00 -0.30|

In thisproblem: X =[ B] ~™*[ B] * X=I * X

And the unitsof I(n,m) are: ~( units of X(n) / units of Z(k) ) *(units of Z(k) / unitsof X(n) ) *
(...for each k=1 to nEquations...)

which exactly cancel, showing that [I] is unitless.

And in this example problem: Z=[ B] *[B] ? *Z, however: |:[B]*[B] "
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[B]*[B] "=

| 0.498398 0. 240022 0. 222537 - 0. 370867 0. 072949
| 0.240022 0. 611552 -0. 133812 - 0. 086466 - 0. 393145|
| 0.222537 -0.133812 0. 898542 0.138175 -0.068144|
| -0.370867 -0.086466 0. 138175 0.471186  -0.291648|
| 0.072949  -0.393145 -0. 068144 - 0. 291648 0. 520321

Here, Z isin a five-dimensional space, but two dimensions of information are lost in the multiply [B] '«
[B], and that information cannot _be recover ed by subsequent multiplies back into a higher dimensional
space. Z @B]*[B] 7 *Zis a least squares best fit of Z onto the 3-D subspace of preserved
information. The example was chosen with Z already within the 3-D subspace. In the “real world”, the Z
values are often experimental measurements which have ai-least tiny errors, often called “noise”,
associated with them. Introducing some redlity, let Z(5) =- 1. 19 inseadof =- 1. 20, and see what
happens. In subtle ways, the inputs and outputs are jostled:

Now X= wher eas before X=

| 1.001600]| | 1.00]

| 1.995584| | 2.00]

| -0.999958]| | - 1. 00|

z @ [B]*[B " *  Z
| 1.100729| | 0.498398 0. 240022 0.222537 -0.370867 0. 072949 | 1.10]
| 2.196069| | 0.240022 0.611552 -0.133812 -0.086466 -0.393145| | 2.20
| -0.500681] @| 0.222537 -0.133812 0. 898542 0.138175 -0.068144| * |-0.50
| -0.602916| | -0.370867 -0.086466 0.138175 0.471186  -0.291648| | -0.60
| -1.194797| | 0.072949 -0.393145 -0.068144 -0.291648 0. 520321| |-1.20

[A]" has remained unchanged, because the coefficients of the equations, not the particular inputs or
outputs, define [A] ™.

So far, the example problems have had X as the first power of A, B, & C individually. Higher-order
polynomials offer a much-more-fruitful generic approach to finding equationsto explain arbitrary
data. HAT least-squares-best-fit’s polynomial coefficients to your data. The understanding that the
matrix elements are numerical partial derivatives is the key to how polynomial fitting works. If you
want to determine 12 polynomial coefficients (=unknowns), you'll need to have a minimum of 12 data-
points (=equations) to work with.

Often, sensors are calibrated using polynomial fits; people want to know, in advance, how accurate the
output of a sensor will be when the sensor outputs emerge from the polynomial that adjusts the raw
sensor signals. Having five times more data-points than the expected number of polynomial
coefficients provides a comfortable margin for finding the actual “best fit”. The reason for having more
data-points than coefficients is that the solution will be an exact fit of the data when #Data-
points=#Coefficients — there is no error - but the resulting polynomia may be a very inaccurate
answer on either side of the datapoints. Having the coefficients best-fit the larger dataset smoothes out
the solution, and also provides a prediction how good the fit is likely to be for another arbitrary real
sensor output. Doing polynomial fits on real data without surplus data & error assessmentsis a formula
for disaster! The extradata also aids in finding and eliminating the occasional bad data-point, which also
helps yield more accurate calibrations.
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As an example of how multivariable polynomials are set-up, let's exercise the examples underlying
equation 22 more times to generate a total of “27 datapoints’ and then solve for the polynomial
coefficients which I'll specify; you'll see that the “numerical partial derivatives’ of a multivariable
polynomidl... have “amost-obvious’ values once understood.

Exerci sing equation: A *X(1)+ B *X(2)+ C *X(3) =Z
1.0*X(1)+2.0*X(2)-1.0*X(3) =Z
to synthesize more “datapoints’:
# X(1) X(2) X(3): Z
1 1.0 0.2 0.3 1.1 <sanme as before
2 0.3 1.0 0.1 2.2 < “
3 0.1 0.2 1.0 -0.5 <
4 -1.0 0.3 0.2 -0.6 <
5 0.5 -1.0 -0.3 -1.2 < “ (wi t hout the added noi se)
6 -1.00 0. 00 2.00 -3.00 <adding 22 nore “datapoints” (#6-#27)
7 -1.00 0.50 -2.00 2.00
8 -1.00 0.50 0. 00 0. 00
9 -1.00 0.50 2.00 -2.00
10 0.00 -0.50 -2.00 1.00
11 0.00 -0.50 0.00 -1.00
12 0.00 -0.50 2.00 -3.00
13 0. 00 0.00 -2.00 2.00
14 0. 00 0. 00 0. 00 0. 00
15 0. 00 0. 00 2.00 -2.00
16 0. 00 0.50 -2.00 3.00
17 0. 00 0.50 0. 00 1.00
18 0. 00 0.50 2.00 -1.00
19 1.00 -0.50 -2.00 2.00
20 1.00 -0.50 0. 00 0. 00
21 1.00 -0.50 2.00 -2.00
22 1.00 0.00 -2.00 3.00
23 1.00 0. 00 0. 00 1.00
24 1.00 0. 00 2.00 -1.00
25 1.00 0.50 -2.00 4.00
26 1.00 0.50 0. 00 2.00
27 1.00 0.50 2.00 0. 00

The “Order” of a polynomia variable is the highest power of that variable in any
particular equation. The coefficient count is one larger than the order, because each
variable has a 0" power term as well. Here's a multivariable polynomial that’s 2 order
in X(1) and T order in X(2) and X(3), so there'll be 12 coefficients — 3x2x2. Using
[C:Z] as the notation:
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[C Z] =
# XIX2X3 X1X2X3 X1IX2X3 XIX2X3 X1IX2X3 XIX2X3 X1IX2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3: Z
A0M0M0 ~17MOMO A27°0M0 MOMINMO ALNMINO A27M17M0 MOMO0M1 AMLMOML A2707M1 AMOMLIMAL MLMIND N2MIND

1 1. 1. 1. 0.2 0.2 0.2 03 03 0.3 006 0.06 006 1.1
2 1. 0.3 0.09 1. 0.3 0.09 01 003 0 9 0.1 0.03 0.009 2.2
3 1. 0.1 0.0l 0.2 002 0 2 1. 0.1 0.0l 0.2 0.02 0.002-0.5
4 1. -1. 1. 0.3 -0.3 0.3 0.2 -0.2 0.2 0.06 -0.06 0.06 -0.6
5 1. 0.5 0.25 -1. -0.5 -0.25 -0.3 ~-0.15 -0.075 0.3  0.15 0.075 -1.2
6 1. - 1. 1. 0. 0. 0. 2. -2. 2. 0. 0. 0. -3.0
7 1. -1. 1. 0.5 -0.5 0.5 -2. 2. -2. -1, 1. -1, 2.0
8 1. -1. 1. 0.5 -0.5 0.5 0. 0. 0. 0. 0. 0. 0.0
9 1. -1. 1. 0.5 -0.5 0.5 2 -2. 2. 1. - 1. 1. -2.0

10 1. 0. 0. -0.5 0. 0. - 2. 0. 0. 1. 0. 0. 1.0

11 1. 0. 0. -0.5 0. 0. 0. 0. 0. 0. 0. 0. 1.0

12 1. 0. 0. -0.5 0. 0. 2. 0. 0. -1, 0. 0. -3.0

13 1. 0. 0. 0. 0. 0. - 2. 0. 0. 0. 0. 0. 2.0

14 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0

15 1. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. -2.0

16 1. 0. 0. 0.5 0. 0. - 2. 0. 0. - 1. 0. 0. 3.0

17 1. 0. 0. 0.5 0. 0. 0. 0. 0. 0. 0. 0. 1.0

18 1. 0. 0. 0.5 0. 0. 2. 0. 0. 1. 0. 0. -1.0

19 1. 1. 1. -0.5 -0.5 -0.5 -2 -2. -2. 1. 1. 1. 2.0

20 1. 1. 1. -0.5 -0.5 -0.5 0. 0. 0. 0. 0. 0. 0.0

21 1. 1. 1. -0.5 -0.5 -0.5 2. 2. 2. - 1. -1. - 1. -2.0

22 1. 1. 1. 0. 0. 0. -2. -2. -2. 0. 0. 0. 3.0

23 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.0

24 1. 1. 1. 0. 0. 0. 2. 2. 2. 0. 0. 0. -1.0

25 1. 1. 1. 0.5 0.5 0.5 -2 -2. -2. - 1. -1. -1, 4.0

26 1. 1. 1. 0.5 0.5 0.5 0. 0. 0. 0. 0. 0. 2.0

27 1. 1. 1. 0.5 0.5 0.5 2. 2. 2. 1. 1. 1. 0.0

X(1) 1 X(2) "~ X(3) "1 z

These are exactly the same as the input data col ums.

The symbol “*” isused in Basic to indicate “to the power of” i.e. exponentiation; so:
X(D)A2 = X(1)* X(1) = X(1)?

The other columns are likewise products of the powers of X(1)*X(2)*X(3) evaluated at each
datapoint. Consider the underlined entry for datapoint #3:
X(1) "2 * X(2)M * X(3)”1 = 0.172 * 0.2"1 * 1.0
= .01 * .2 * 1.0
= .002
& [ C Z] solvesjustlike[ B: Z] , (i.e [A:Y]=[[Ct] * [C] : [Ct] * Z] yielding twelve values:

The solved polynomial coefficientsare:

PolyCoeff: Powers:
X1h X2n X34

1 0.0 0 0 0

2 1.0 1 0 0 = 1.0*X(1)"1

3 0.0 2 0 0

4 2.0 0 1 0 = 2.0*X(2)"1

5 0.0 1 1 0

6 0.0 2 1 0

7 -1.0 0 0 1 = -1.0*X(3)"1

8 0.0 1 0 1

9 0.0 2 0 1 The other coefficientsare 0’s.

10 0.0 0 1 1

11 0.0 1 1 1

12 0.0 2 1 1 = 0.0 * X(1)72 * X(2)"1 * X(3)"1
VAN VAN VAN

.the power s of each coefficient are added for clarity.
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Putting the previous noise back in: Z(5) = - 1.19 & re-solving tweaks al the coefficients.

The polynomial coefficients become:
Powers:
x2n o X3n

PolyCoeff:

. 000418
. 005937
. 006181
. 999261
. 012926
. 013015
. 000043
. 003022
. 003048
. 000214
. 006061
. 006171

OO ~NOUI ARWN B
1 1 1
eololoNoNaol ool Noi o)

IR
N
1

Xan

NFONRFONPFONRO

PRPPRPOOORFRPEFLPROOO
PFRPRFRPFPPRPPOOOOOO

Prior to putting noise in the data, there was no error in this synthesized example. Now we can look at
the errors by exercising the resulting polynomial whose coefficients were just computed:

Exerci sing the pol ynonm a

# Z: dat a

1 1. 100000
2 2. 200000
3 - 0. 500000
4 - 0. 600000
Y(5) -1.190000
6 - 3. 000000
7 2. 000000
8 0. 000000
9 - 2. 000000
10 1. 000000
11 - 1. 000000
12 - 3. 000000
13 2. 000000
14 0. 000000
15 - 2. 000000
16 3. 000000
17 1. 000000
18 - 1. 000000
19 2. 000000
20 0. 000000
21 - 2. 000000
22 3. 000000
23 1. 000000
24 - 1. 000000
25 4. 000000
26 2. 000000
27 0. 000000

OFRPWORFRWFONOFRNRFONNORLREFLFON

i poly

. 100045
. 198277
. 499593
. 603655
. 193462
. 999645
. 000864
. 000901
. 999061
. 001087
. 999212
. 999512
. 000503
. 000418
. 999667
. 999920
. 000048
. 999823
. 000636
. 000499
. 999637
. 000207
. 000174
. 999859
. 999777
. 999849
. 000080

The errors:

Z.poly-Z: data
0. 000045
-0.001723
. 000407
. 003655
. 003462
. 000355
. 000864
. 000901
. 000939
. 001087
. 000788
000488
. 000503
. 000418
. 000333
000080
. 000048
. 000177
. 000636
. 000499
. 000363
. 000207
. 000174
. 000141
. 000223
. 000151
. 000080

<-

max.

error

Appendix C page 48: Hat.exe— presently computes (only) polynomial-based solutions.
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Here's how the input data for the example above looks inside a spreadsheet:

E Microsoft Excel - HatIn.xls

Eﬂ File Edit Wew Insert Format  Tools  Data  Window  Help
HRN=N" NERENN= BN o S R S AR RN IR NS S 1N WA W - N
A1 - & Hatln.csy
A B | C | D | E | F | & | H
1 Hatln.csy 12011.07.27 Jeff Setterhalm Description|Date|Analyst
2 2 g 1 4 nDatRowsinCaols|nCollndex|MaxOrder
3 1 2 3 1| =0=In"g|=0=0ut"s|0=ignore
4 2 1 1 In's: palynomial arder
5 | index | R A X3 i Column labels
a] 1 1 0.2 0.3 1.1 <game as before
7 2 0.3 1 0.1 22 0«
g 3 0.1 0.2 1 a5 <« "
9 4 -1 0.3 0.z a6 = "
10 | 05 -1 0.3 1190 <= " (noise included)
11 B -1 0 2 -3| <additional datapoints #5-#57
12 7 -1 0.5 -2 2
13 = -1 0.5 0 1]
14 9 -1 0.5 2 -2
15 10 0 445 -2 1
16 11 1] 0.5 1] -1
17 12 0 0.5 2 -3
18 13| 1] a -2 2
19 14 0 a 0 1]
20 15 0 a 2 -2
21 16 0 0.5 -2 3
22 17 1] 0.5 1] 1
23 13 0 0.5 2 -1
24 19 1 0.5 -2 2
25 20 1 0.5 0 1]
26 21 1 0.5 2 -
27 22 1 a -2 3
28 23 1 a 1] 1
29 24 1 a 2 -1
30 25 1 0.5 -2 4
31 26 1 0.5 1] 2
32 27 1 0.5 2 1]
33 (VR End of Testcase M 9
34 |The data above was synthesized by exercising:
35 1.05AMNH2. 0% .03 = Y
3R

Export this file in a “comma separ ated value” (.csv) format as “Hatin.csv” for use by HAT.
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The result is awkward to read:
~,2011. 07. 27, Jeff Setterholm Description|Date| Anal yst

27,5, 1,4, nDat Rows| nCol s| nCol | ndex| MaxOr der
,1,2,3,-1, >0=In"s|<0=Qut " s| 0=i gnore
, 2,1, 1, , In"s: polynom al order

i ndex , X(1), X(2), X(3), Z, Col umm | abel s

1,1,0.2,0.3,1.1, <sane as before

2,0.3,1,0.1,2.2," < e

3,0.1,0.2,1,-0.5," <

4,-1,0.3,0.2,-0.6," <

5,0.5,-1,-0.3,-1.19," < "" (noise included)"

6,-1,0,2,-3, <additional datapoints #6-#27

7,-1,0.5,-2, 2,

8,-1,0.5,0,0,

9,-1,0.5,2, -2,

10,0,-0.5,-2,1,

11,0,-0.5,0,-1,

12,0,-0.5,2,-3

13,0,0,-2,2

14,0,0,0,0

15,0,0,2,-2

16,0,0.5,-2,3

17,0,0.5,0,1

18,0,0.5,2, -1

19,1,-0.5,-2,2

20,1,-0.5,0,0

21,1,-0.5,2,-2

22,1,0,-2,3

23,1,0,0,1

24,1,0,2,-1

25,1,0.5,-2,4

26,1,0.5,0,2

27,1,0.5,2,0

YILEEEEEn b ni i n i inri il end of Testcase [/ /11T TTT719

The data above was synthesized by exerci sing:
1. 0*X( 1) +2. 0*X(2)- 1. 0* X( 3) Y

HAT can be used without using a spreadsheet to generate the “Hatln.csv” file. For example:
Hat I n. csv, 2011. 07. 27, Jeff Setterhol m Description| Dat e| Anal yst

27, 5, 1, 4, nDat Rows| nCol s| nCol I ndex| MaxQr der
, 1, 2, 3, -1, >0=In"s|<0=Qut " s|O=i gnore
, 2, 1, 1, , In"s: polynom al order
i ndex , X(1), X(2), X(3), Z, Col umm | abel s
1, 1.0, 0. 2, 0.3, 1.1, <sane as before
2, 0.3, 1.0, 0.1, 2.2, < "
3, 0.1, 0.2, 1.0, -0.5 < "
4, -1.0, 0. 3, 0. 2, -0.6, <
5, 0.5, -1.0, -0. 3, -1.19, < " (noi se incl uded)
6, - 1. 00, 0. 00, 2. 00, -3.00, <additional datapoints #6- #27
7, - 1. 00, 0. 50, -2. 00, 2.00,
8, -1.00, 0. 50, 0. 00, 0. 00,
9, - 1. 00, 0. 50, 2. 00, -2.00,
10, 0. 00, -0. 50, -2. 00, 1. 00,
11, 0. 00, -0. 50, 0. 00, - 1. 00,
12, 0. 00, -0. 50, 2. 00, - 3. 00,
13, 0. 00, 0. 00, -2. 00, 2.00,
14, 0. 00, 0. 00, 0. 00, 0. 00,
15, 0. 00, 0. 00, 2. 00, -2.00,
16, 0. 00, 0. 50, -2. 00, 3. 00,
17, 0. 00, 0. 50, 0. 00, 1. 00,
18, 0. 00, 0. 50, 2. 00, - 1. 00,
19, 1. 00, -0. 50, -2.00, 2. 00,
20, 1. 00, -0. 50, 0. 00, 0. 00,
21, 1. 00, -0. 50, 2. 00, - 2. 00,
22, 1. 00, 0. 00, -2. 00, 3. 00,
23, 1. 00, 0. 00, 0. 00, 1. 00,
24, 1. 00, 0. 00, 2. 00, - 1. 00,
25, 1. 00, 0. 50, -2. 00, 4. 00,
26, 1. 00, 0. 50, 0. 00, 2. 00,
27, 1. 00, 0. 50, 2. 00, 0. 00,
YILLIETEEErr i1l end of Testcase [/ /11 1TTTTETETETTEEETTTTTTTT719

The data above was synthesi zed by exerci sing:
1. 0*X( 1) +2. 0% X(2)- 1. 0* X(3) z
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Hat exports “HatOut.csv” with column formatting resembling the column formatting of the input data.
So taking the time to align the columns of your “Hatln.csv” may improve your subsequent
documentation and communication of the results achieved using HAT.

Comments about the setup of “Hatln.csv”: each field must be = 34 characters wide.
Line-4:
HatIn.csv, 2011.07.27,Jeff Setterholm Three commas must follow the three fields.
Descri ption| Date | Anal yst Remarks are optional.
Line-3:
27, 5, 1, 4 Four commas must follow the four fields.
nDat Rows| nCol s | nCol | ndex| MaxQOr der Remarks are optional.

“MaxOrder” is the highest combined power
In version 0.40 this value must be >0, or the program stops.

Set nCollndex = 0 if you have no index column.
Line-2:
, 1, 2, 3, -1, >0=In"s|<0=Cut " s|0=i gnore
nCols commas must follow the first nCols fields.
Remarks are optional.
The columms are reordered, per your assignments above, in “HatCQut.csv”,
whi ch can then be renanmed “Hatln.csv for subsequent editing & use as input.
Line-1:
, 2, 1, 1, , In"s: polynom al order
nCols commas must follow the first nCols fields.
Remarks are optional.
, , , , , I'n"s: polynon al order isvalid
Line O:
i ndex X(1), X(2), X(3), Z, Col um | abel s
nCols commas must follow the first nCols fields.
Remarks are optional.
If you don't provide an” Index” column for your data— HAT will add the column to “HatOut.csv”.
The index is used in accuracy/error reporting.

Line 1: etc
1, 1.0, 0.2, 0.3, 1.1, <sane as before
nCols commas must follow the first nCols fields. Indices don’t need to
sequential or ordered . Remarks are optional.
Line 27: HAT expectsto read nDatRows of data.
27, 1. 00, 0. 50, 2.00, 0.00,

As an example, changing lines-4to O of the example on the previous pageto:
Hat I n. csv, 2011. 07. 27, Jeff Setterhol m Description| Dat e| Anal yst

5, 5, 1, 1, nDat Rows| nCol s| nCol | ndex| MaxOr der
3, 2, 1, -1, >0=In"s|<0=CQut"s|0=ignore
, 1, 1, 1, , I'n"s: polynom al order
i ndex , X(1), X(2), X(3), Y, Col umm | abel s

Produces“HatOut.csv”:
Hat Qut . csv, 2011. 07. 27, Jeff Setterhol m Descri ption| Date| Anal yst

5, 5, 1, 1, nDat Rows| nCol s| nCol | ndex| MaxOrd
. 1, 2, 3, -1, >0=In" s|<0=0Qut"s|0=ignore
, 1, 1, 1, , I'n"s: polynon al order
| ndex X(3), X(2), X(1), Z, Col um | abel s <- Columnsare reordered.
1, 0. 3, 0.2, 1.0, 1.1, <sane as before
2, 0.1, 1.0, 0. 3, 2.2, < "
3, 1.0, 0. 2, 0.1, -0.5, < "
4, 0.2, 0. 3, -1.0, -0.6, < " <- Dataistruncated.
5, -0. 3, -1.0, 0.5, -1.19, < " (noise included)
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The pol ynomni al coefficients are:

Qutput# 1, Power s:
0.347122655325D- 02, 0

-0.100348474693D+01, 1,
0. 199547695393D+01, 0,
0. 100037796722D+01, 0

Data Scaling

Even using 64-hit precision real numbers with ~ 24 significant digits, input data that naturally arisesin
professional use of HAT (to do polynomia fits) will occasionally produce intermediate computations
concurrently both so large and so small that information is lost due to round off error in combining the
very large and very small numbers.

- the added 0'" order term
- coefficient of X(3)"1
- coefficient of X(2)"1
- coefficient of X(1)"1

oroe
rooe
“AAA

PODdME

Earlier, the equation of a straight line:  Y=nt X+b wasmentioned wherein m isthe slopeand b is the
Y-intercept. Hat scales polynomia data by using m's and b’s to adjust data values for better
computational advantage and also for better understanding. The names of m and b are changed to the
way that engineerstalk - to Gain (=m) and Bias (=b), Gain and Bias — “GB” is my abbrev. - operate
on data columns; Gain multiplies the columns data entries (e.g.: vertically expands the data when
plotted on a2-D graph) and Bias shifts the column entries (e.g. vertically moves the data up or down on
agraph without otherwise morphing the data).

Pass 1 — Uniform Bounding - GB1

GB’ing every data column of “Hatln.csv” to exactly fit the interval [ -1.0, 1.0 ] yields the fact that, no
matter how high the order of a polynomial becomes, the numerical partia derivatives will reach but- not-
exceed plus-or-minus 1.0. Hence the 24 significant digits will be used to better effect by operating on
numbers “that are in the same ballpark”. So we seek the GB values for:

Col umQut = Gin*Columln + Bias
Sort through Columnin to find the smallest and largest values: ColumnlinMin and ColumninM ax.
We want ColumnOutMin =-1.0 and ColumnOutMax = +1.0. So:

Gain = (ColumQut Max - Col umQutM n) / (Col uml nMax — Col uml nM n)
= 2.0 /" (Col uml nMax — Col uml nM n)
When (Col umml nMax—Col umml nM n) =0. (a constant colum), set Gain = 1.0
Bi as Col umQut Max - Gin * Col uml niVax

= 1.0 - @Gin * Col uml nMax

VWhen (Col uml nMax—Col uml nM n)=0. this Bias val ue produces
Col umQut =1. 0, which seens to have beni gn downstream effects.

GB’ing into the interval [ -1.0, 1.0 ] often yields polynomial coefficients that are also in the same
range; © when polynomial coefficients are significantly outside the range, the coefficients may be
competing with each other to force an un-natura fit. (I’'m not sure... but watch for large GB1-scaled
polynomial coefficients and form your own opinion(s) about what's happening.)

Un-scaling, or de-scaling the resulting coefficients to their requested values isn’'t easy to do, but HAT

provides. Use of the binomia theorem and Pascal’s triangle in a multi-variable, arbitrary-order
polynomia environment accomplishes the task, here referred to as “de-GB’ing’. If you decide to tackle
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the algorithms, you may find that G’ing & de-G’ing are fairly easy to do, whereas de-B’ing is rather
complicated. | surmise that Bias shifts alter (~screw up) the inter-column geometry in hyperspace,
whereas a Gain change primarily affects the data column involved.

Pass 1 scaling — GB1 — for the data on page 15 yields:

Scaling the input colums into [-1.0,+1.0]
using GlL and Bl... as in Y=GLl*X+B1:

i ndex X(1) X(2) X(3) : 4
Gl: 1. 0000 1. 0000 0. 5000 0. 2857
B1: 0. 0000 0. 0000 0. 0000 -0. 1429
1 1. 000000 0. 200000 0. 150000 0. 171429
2 0. 300000 1. 000000 0. 050000 0. 485714
3 0. 100000 0. 200000 0.500000 -0.285714
4  -1.000000 0. 300000 0.100000 -0.314286
5 0.500000 -1.000000 -0.150000 -0.482857
6 -1.000000 0. 000000 1.000000 -1.000000
7 -1.000000 0. 500000 -1.000000 0.428571
8 -1.000000 0. 500000 0.000000  -0.142857
9 -1.000000 0. 500000 1.000000 -0.714286
10 0.000000 -0.500000 -1.000000 0. 142857
11 0. 000000 -0.500000 0. 000000 -0.428571
12 0. 000000 -0.500000 1.000000 -1.000000
13 0. 000000 0. 000000 -1.000000 0. 428571
14 0. 000000 0. 000000 0.000000  -0.142857
15 0. 000000 0. 000000 1.000000 -0.714286
16 0. 000000 0.500000 -1.000000 0. 714286
17 0. 000000 0. 500000 0. 000000 0. 142857
18 0. 000000 0. 500000 1.000000 -0.428571
19 1. 000000 -0.500000 -1.000000 0.428571
20 1. 000000 -0.500000 0.000000  -0.142857
21 1. 000000 -0.500000 1.000000 -0.714286
22 1. 000000 0. 000000 -1.000000 0. 714286
23 1. 000000 0. 000000 0. 000000 0. 142857
24 1. 000000 0. 000000 1.000000 -0.428571
25 1. 000000 0. 500000 -1.000000 1. 000000
26 1. 000000 0. 500000 0. 000000 0.428571
27 1. 000000 0. 500000 1.000000 -0.142857

With no further scaling, after [B] is expanded to 13 columns to accommodate the 12 polynomial

coefficients, the upper left corner of [A] =[Ct]*[C] becomes:
27.000000 5.900000 15.350000 2.200000
5.900000 15.350000 5.153000 -1.780000
15. 350000 5. 153000 15.070700  1.842000
2.200000 -1.780000 1.842000 5.920000

Furth.é.r insight canmbe gained b)./. .goi ng throug.ﬁ a second round of pure-gain adjustment, as you'll see
shortly...

Intuition in hyper space:
Two aspects of hyperspace seem intuitive to me:

1. A number caled “the determinant” of amatrix isthe (signed: ) hypervolume

enclosed by the vectors. (The outputs columns, if any, aren’t part of the determinant).

Thisisjust like “ared’ in 2-D and/or “volume” in 3-D. (The “shapes’ are parallel epipeds)

—and-

2. The “vector dot product” between any two columns of the matrix. When each column has a total
length of 1.0, the dot product is the cosine of the angle between the vectors. Hence the angle between
vectors can be computed in N-dimensional space and means the same thing as in 2-D or 3-D.
Details about determinants & dot products follow.
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1) It's difficult to clearly communicate the closed-form mathematical expression for the value of the
determinant, but the value “falls out” of the solution processes that we' ve been using, with or without
full matrix inversion. Starting with the value 1.0, multiply by the values which are used (in division)
to reduce the initial matrix to an identity matrix; presto: the signed hypervolume of the input matrix
— the determinant — materializes; who'd have thought the computation would be that smple? If that
volume goes to zero — meaning that the input vectors are (somehow) collapsed on themselves, you
might be “ dead-in-the-water” using ordinary Algebra 1 techniquesto solve a problem; you have an
incomplete set of numerical partial derivatives. Fortunately HAT’'s matrix inverter has features which
bypass determinant=0. hang-ups a key feature in ease-of-use of the software; the inverter will
automatically reduce the size of the system appropriately and give you the next best answer — more on
how this is done later. Without a second round of pure-gain adjustment, the determinant of [A] “falls
out” as:
Determ nant (= the signed hypervolune) for the 12-coefficient case:
Row. Colum: Fractional contrib

1. *
27.000000000000
15. 206666666667
13. 946062947538
. 163783102623
. 039931495913
. 218495100420
. 402570904799
. 166841481094
. 101593852033
. 731652394579
. 418126228482

12 12 . 153616077359
Det er m nant = 562370. 940460001886

. which looks like “just another very big, not particularly insightful, number”. The dot product
facilitates pure-gain adjustment , so let’s consider the dot product.

=
GO O, WONSNPF

[EEN
ORPOOCOR~WONSNE
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2) It turns out that each individual output element in any matrix multiply (ref.: page 4) is a dot
product of the corresponding row vector —and- column vector on the right side of the equation. If X and
Y are any two vectors with the same number of elements then:

XeY =*X dot Y”
= ared number (cdled a“scalar”, whichisto say —asingle number, @"not avector”)
=(X@*Y(@D) + X2)*Y(2) + X(3*Y(3) + X(4)*Y (4 +...etc.)
= (Magnitude of X) * (Magnitude of Y) * Cosine(of the angle between X and Y in hyperspace)

---------- ~End of “Intuition in Hyperspace’ ----------

Pass 2 - Pure-Gain Adjustment — G2
To use the dot product for pure-gain adjustment, take the dot product of each data column with itself.
The angle between a vector and itself is zero; so the cosine of the angle is 1.0. The dot product of
column Y with itself becomes:

YeY = (Magnitude of Y) * (Magnitude of Y) * 1.0

= (Magnitude of Y) 2 hence the square root of thisdot product isthe length of Y.
S0 vectors are pure-gain adjusted to length one by dividing by the square root of the dot-product of the
vector with itself. Theideaof length also remains intuitive in hyperspace.
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After [B] is expanded to 13 columns to accommodate the 12 polynomial coefficients, the G2 pure-gain
adjustments for the 13 columnsof [C] are:

G2: 5.196152 3.917908  3.882100 2.433105 1.649364 1.565441 z
3.912480 3.006801 3.005653  1.592733  1.227905 1.226062 2.767392
Dividing each column of [C] by its G2 adjustment, the upper left corner of [Ct*C] becomes:
1.000000 0.289812 0.760956 0.174012
0.289812  1.000000 0.338797 -0.186726
0.760956  0.338797  1.000000 0.195012
0.174012 -0.186726 0.195012  1.000000

The values above ar e the cosines of the actual angles between the various columns of data;

t he correspondi ng actua

0. 000 73. 153
73. 153 0. 000
40. 451 70. 196
79.979 100. 762

angles (in

degrees) are:

40. 451 79.979
70. 196 100. 762
0. 000 78. 755
78. 755 0. 000

Det éf'm nant fo“r' t he 12-01(')'effi ci entmcasesu

Row. Col unmm: Fracti onal

5 5
9 9
10 10
1 1
11 11
6 6
8 8
4 4
7 7
2 2
12 12
3 3

Det er m nant =

eeoloNoloNoNoNololoNoNaN N

.0~

. 000000000000
. 999983396784
. 955558140299
. 950096960741
. 819076953471
. 799783117546
. 544194470370
. 463868970282
. 407156481554
. 405694266581
. 207186023014
. 061769378211
. 000317364340

contribution:

which tells you that only .031% of the maximum possible volume (=1.0) is enclosed by the 12 vectors.
This gives you a sense of “how far down toward the noise” the inverter is going in computing your
answers. In contrast, the four wefficient case using the same 27 datasets has a much more robust

determinant:

Determ nant for the four-coefficient case:

Row. Col um: Fracti onal

4 4
3 3
1 1
2 2

Det er m nant

QOOORHEF

.0~

. 000000000000
. 998569858442
. 964149455586
. 851506117380
. 819805043087

contribution:

~82% of the maxi num vol une i s spanned

Each step of the matrix inversion process adds a dimension to the solution. The fractional contribution
reveals how far out of the accumulating solution hyper-subspace the next dimension protrudes; when the
value is less than 1.0, part of that dimension has been consumed by the solution subspace. When the
fractional contributions to the determinant = 0.0, the inverter has reached the-end-of-the-line... a
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collapsed subspace... al the rest of the dimensions are “linearly dependent”... and some dimension(s)
of [A] will need to be systematically discarded.

So the G2 pure-gain adjustment provides intuitive insight into what’s happening inside the inversion
hyper-subspaces, and reduces computational round off errors at the same time.

Reviving Collapsed Solutions = “Eliminating linear dependence(s)” - asimple example.

Let’s go back the opening problem and change Equation#3:

Equati on#3 = +2. 1*Equati on#l -3. 2* Equat i on#2
In a nutshell that’s “linear dependence”: when one vector equals the sum of any combination of the
other vectors... which only happers when a vector lies within the hyper-subspace already created by
one-or- more other vectors.

Recall that the fractional contributions show how far each new vector “sticks out” from the previous
hyper-subspace; if the new vector doesn't “stick out” at all, then it's linearly dependent... and “dead
wood"/useless... in terms of aiding the inversion process the inverter is trying to map the output
(hyper)space back into the input (hyper)space, but the inverter can't map back those dimensions of the
input (hyper)space wherein the numerical partial derivatives are undefined. Proceeding:

Equation#1: 1.00 *A +0.20 *B +0.30 *C= 1.10 *(+2.1)
Equation#2: 0.30 *A +1.00 *B +0.10 *C= 2.20 *(-3.2)
Equation#3: 0.10 *A +0.20 *B +1.00 *C= -0.50
Revising equation#3 to be linearly dependent :
Equation#3: 1.14 *A -2.78 *B +0.31 *C= -4.73
Now watch the inverter/solver crunch on this: Appendix B's OverWriter solvesthis
in detail on pages 34 thru 37 .

Equations: Reduce to ldentity: Qut put#1: Append an identity matrix:
-1 -2 -3

-1 1.000000 0. 200000 0. 300000 : 1.100000 1. 000000 0. 000000 0. 000000

-2 0.300000 1. 000000 0. 100000 2. 200000 0. 000000 1. 000000 0. 000000

-3 1.140000 -2.780000 0. 310000 -4.730000 0. 000000 0. 000000 1. 000000

Row reductions “eliminate” one variable at a time using the largest remaining coefficient first:

-1 2 -3
-1 1.082014 0.000000 0.322302 0.759712  1.000000 0.000000 0.071942
3 -0.410072 1.000000 -0.111511 1.701439  0.000000  0.000000 -0.359712
-2 0.710072  0.000000 0.211511 0.498561  0.000000 1.000000 0.359712

...after the 2" row reduction:

1 2 -3
-1 1.000000 0.000000 0.297872  0.702128 0.924202 0.000000 O0.066489
-3 0.000000 1.000000 0.010638  1.989362 0.378989 0.000000 -0.332447
2 0.000000 0.000000 0.000000  0.000000 -0.656250 1.000000 O0.312500

Matrix A is ill-conditioned! And the unreached space is the row and column of the 1. 000000;
sinply zero out that row and columm, vyielding:

1 2 -3 Answer#1:
1 1.000000 0.000000 0.297872 0.702128 0.924202  0.000000 0.066489
3 0.000000 1.000000 0.010638 1.989362 0.378989  0.000000 -0.332447
-2 0.000000 0.000000 0.000000 0. 000000  0.000000  0.000000 0.000000

| suggest the notation [ A] *® = [ Ad] for the chosen linearly-independent inverse subset of [A].
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The — sign on the indices keeps track of what rows and columns aren’t used and hence will be zero'd. In
this example: Equation#2 and variable C have been bypassed.
[Ad*[A]=
1.000 0.000 0.298 -> A
0. 000 1.000 0.011 -> B
0.000 0.000 0.000 ->C
...showing how to combine the unknowns.

1.0*A + .298*C
1.0*B + .011*C
. 000*C

[Al*[Ad]=
1.000 0.000 0.000 -> Eqgn#l1l= 1.000* Eqn#1
0.656 0.000 -0.313 -> Egn#2= .656*Eqn#1- .313*Eqn#3
0. 000 0.000 1.000 -> Egn#3= 1. 000* Eqn#3
... showing how to combine the equations.
Egqn#2= . 656* EQn#1- . 313* EqQn#3
Eqn#3= 2. 095* Eqn#1 - 3. 194* Eqn#2

Actudly, at full precision Eqn#3= 2.1 *Eqn#l -3.2 *Eqn#2 asintended.
HAT’s overwriter performs the same computation, but in condensed notation:
1 -3 2 Answer#l:
1 0.924 0.000 0.066 0.702128 = A
3 0.379 0.000 -0.332 1. 989362 =B
-2 0.000 0.000 0.000 0. 000000 =C

Again: Equation#2 and variable C have been eiminated in [Ad] — because their forward partia derivative
reduced to zero during the inversion process. The valuesfor A, B, & C exactly satisfy Eqn#1, Eqn#2, and revised
Egr#3 smultaneoudly — but only because Equation #3 was aready in the 2-D inverted subspace.

When the OverWriter returns zeroed rows and columns inside the inverse matrix — HAT has
chosen alinearly dependent subset of the solution space to eliminate, from among several/many (at
least two) possible choices. While it may seem more like a bother than a boon to return these zero' d
values, the fact is that traditional matrix inverters stop, providing none of the (hyper)spatia insight that
[A]*[Ai] does(e.g.: above). Being ableto revive collapsed solutions has analytical benefits that shine
when solving non-linear problems, which will be briefly discussed at the end of this paper. There's
one benefit that is easy to explain, appliesto HAT, and isamazing (at least to me):

In solving real-world engineering problems — vital infor mation often exists within what appears to be
(in “casual” observation) worthless noise At the same time, real-world problems often have close, but
not exact, partial derivatives. Unlike the linearly dependent example above, where the third- pass partial
derivative was 0.000000 , commonly the remaining derivatives get smaller and smaller without actually
going to zero. Every vector that’s inverted isimplicitly “asignal”, and every vector that isn’'t inverted is
“part of the noiseg”. So, in inversion, a “noise floor” is established that’'s greater than zero, below which
the fractional contributions to the determinants will be ignored. What amazes me is that, as the
determinant of the incoming matrix gets closer to zero (drilling down into the noise), the determinant of
the inverse grows by a reciprocal amount (becomes an increasingly important signal)... which would go
to infinity in the limit. So, in the inverse matrix, the most dominant signals areright next to the noise
that was excluded! If the noise is adlowed to invert, your answers are likely to be swamped by
nonsense! For arbitrary problems, at least part of te information supporting the accurate answers
resides close to the source of wrong answers; the essence of accurate problem solving is that harsh!
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...and Mother Nature isn’'t even trying to deceive you, because she’'s impartial... which is as close to
“fair” as you can reasonably hope to get... mistakes that result will be yours alone - after you've
outgrown HAT.

Appendix A hasintroductory matrix solver details.
Appendix B has a matrix Pseudolnverter, OverWriter, & Linear Dependence Eliminator..
Appendix C: References Hat.exe version 0.50 — presently a matrix-based Polynomia Solver.

For those with keen interest in what lies beyond HAT.exe, consider:
Pseudoinver se System Analysis

Eventually a significant fraction of the world’s sensor calibrations will be done using physics
models of the sensors — characterizing sensors by adjusting the coefficients of their physics models to
fit the data. Part of the elegance of this approach is that, when a sensor fails calibration, there's a direct
connection to what went wrong inside the sensor; another part of the elegance is that the understanding
of the physics of the device is confirmed to be sufficiently accurate for the present purposes; another
part of the elegance is that the knowledge of how the device works is not lost as experts drift away from
the project.

Here aretheadditional concepts:

1. Most physics models are nortlinear. Imagine that “solving problems’ is about finding your way to
the bottom of an “error valley”. Linear systems resemble “one big valley” — such that, no matter where
you start, in one step you go the very bottom of the only valey... in a “least-squares sense”. Nontlinear
models aren’t “one big valey”, instead, they’re like range of mountains, and if you plunk yourself down
anywhere & head downhill, you may arrive at the bottom of the wrong valley. An initial guess about the
coefficients of your model that puts the system analyzer “in the right valley” avoids alot of iterating.

2. Given a physics model, numerical partial derivatives are easy to compute. Tweak the coefficients
a very smal amount, note the resulting changes in all the outputs, divide the output changes by the
coefficient changes, and presto: you have the local numerical partial derivatives.

The partial derivatives form the [B] matrix, and (the present model Z- the measured Z) form the
Zerror vector or [Zerror] matrix. When you solve the [B]:[Zerror] systemfor deltaX, the detaX
vector (which is a linear answer) will probably take you too far... to a place where X produces a larger
magnitude (length) of Zerror than where you started; but keep multiplying deltaX by smaller and
smaller step sizes, and at some closer range you'll find lower error. Go there and repeat the process of
generating the partials.

3. Many physics models are locally linear around their correct solution. Hence, as your deltaX’s
move the solution farther downhill, the rate of convergence usually accelerates.
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In developing your algorithms for Pseudoinverse System Analysis, start with a seemingly simple
example to which you aready know the answer, e.g.:
Z= A *W°
Where the actual answer is Z=3.0%* W’
Using seven datasets: W=[1.,2.,3.,4.,5.,6.,7.]

X(D=A, X(2)=B

tweak factor for A & B =.0000001

Iteration Step Size A B Zerror
0 0. 0. 00000000 0. 00000000 77.537087899921
1 1. 60. 00000010 0. 00000000 49. 112116631235
Note: the inverter didn't “bonb out” wth B s partial s=0.

2 . 235620 38.56795235 0.29329714 40. 530903802222

3 . 247580 24.26810100 0.58499904 34. 227718152370

4 . 244914 15.12991934 0.87244842 29. 660189115189

5 . 243793 9.77620060 1.13994511 25. 936697899004

6 . 244955 6. 85297078 1.36831328 22.118812610132

7 . 267468 5.17028361 1.56029434 17. 914464550170

8 . 442948 3.56893485 1.81154376 12. 152431891637

Note: the rapid convergence once “cl ose”:

9 1. 007952 2.83895959 2.02648293 0. 688606551725
10 1. 031367 3.00242358 1.99881980 0. 104336532734
11 . 999772 2.99999537 2.00000101 0. 000026355628
12 . 999999 3. 00000000 2.00000000 0. 000000000058
13 1. 000966 3. 00000000 2.00000000 0. 000000000000

With aknown answer, it’s easy to tell when the bottom of the correct valley has been found.

Appendix P, Entry #2, page 49-50, suggests how pseudoinver se system analysis and other high-

dimensional mathematical tools may aid in achieving transparent governance.
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Appendix A: An Introductory Matrix Solver

Pages 25 thru 27 are the output of program : “M 1stUse.exe”=" M 1UseOut-AppendixA.txt”
Pages 28 thru 31 are the BASIC source code: “M 1stUse.bas” (compiled by QuickBASIC 4.5)

The output datafileis: “M1IUSEOUT.TXT” asfollows:
Qut put of: ' MlstUse.exe' version 0.40 2011.09.09 JMs

The program may have errors.
I nput data may have been mis-interpreted.
USE THI S PROGRAM S RESULTS ONLY AT YOUR OWN RI SK.

Opening file ' MJSEIN. TXT" for input: Run: 09-09-2011 15:03:54
K- Equations: 3
N- Unknowns : 3
L-Qutputs : 4

kEquati ons = nUnknowns

[AY] will be solved left-to-right.

| nput from' MJseln. Txt': (Trailing commas cause read errors.)
1 2 3
1 0. 3000 1. 0000 0. 1000 2.2000 0. 0000 1. 0000 0. 0000
2 1. 0000 0. 2000 0. 3000 1. 1000 1. 0000 0. 0000 0. 0000
3 0. 1000 0. 2000 1. 0000 -0. 5000 0. 0000 0. 0000 1. 0000

Thisislike the opening example on page 3,
but rows 1 & 2 have been interchanged (including I) to exer ciser ow swapping.
Set the noise floor:

Val M n= 0. 000000010000000
----- Top of the | oop: Reduce Row/ colum 1: -----
1 2 3
1 0. 3000 1. 0000 0. 1000 2.2000 0. 0000 1. 0000 0. 0000
2 1. 0000 0. 2000 0. 3000 1.1000 1. 0000 0. 0000 0. 0000
3 0. 1000 0. 2000 1. 0000 - 0. 5000 0. 0000 0. 0000 1. 0000
Find the | argest renmmining coefficient in colum 1 of [A]:
The abs(max) = 1.0000 at n= 2
No division needed - step skipped.
Swapping row 2 wth row 1: J[A:'Y] becones: =theexampleonpage3.
1 2 3
1 1. 0000 0. 2000 0. 3000 1.1000 1. 0000 0. 0000 0. 0000
2 0. 3000 1. 0000 0. 1000 2.2000 0. 0000 1. 0000 0. 0000
3 0. 1000 0. 2000 1. 0000 - 0. 5000 0. 0000 0. 0000 1. 0000
Subtract row 1 fromthe other rows using a multiplier
Reduce row 2 wusing nultiplier 0. 3000 above; [ A Y] becones:
1 2 3
1 1. 0000 0. 2000 0. 3000 1.1000 1. 0000 0. 0000 0. 0000
2 0. 0000 0. 9400 0. 0100 1.8700 - 0. 3000 1. 0000 0. 0000
3 0. 1000 0. 2000 1. 0000 - 0. 5000 0. 0000 0. 0000 1. 0000
Reduce row 3 wusing nultiplier 0. 1000 above; [ A Y] becones:
1 2 3
1 1. 0000 0. 2000 0. 3000 1.1000 1. 0000 0. 0000 0. 0000
2 0. 0000 0. 9400 0. 0100 1.8700 - 0. 3000 1. 0000 0. 0000
3 0. 0000 0. 1800 0. 9700 -0.6100 -0. 1000 0. 0000 1. 0000

~ At the bottom of theloop: this column has been reduced to the form seen in an identity matrix.
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1 2 3
1 1. 0000 0. 2000 0. 3000 1.1000
2 0. 0000 0. 9400 0. 0100 1.8700
3 0. 0000 0. 1800 0. 9700 -0.6100
Find the | argest remaining coefficient
The abs(max) = 0. 9400 at n= 2
Dividing row 2 hy 0.9400, [A'Y] becones:
1 2 3
1 1. 0000 0. 2000 0. 3000 1.1000
2 0. 0000 1. 0000 0.0106 1.9894
3 0. 0000 0. 1800 0. 9700 -0.6100

No row swapping needed - step skipped.

Top of the |oop: Reduce Row colum 2:

Subtract row

Reduce row
1

1 1. 0000

2 0. 0000

3 0. 0000

Reduce r ow
1

1 1. 0000

2 0. 0000

3 0. 0000

Top of the |oop: Reduce Row colum 3:

2
1

3

fromthe other

using multiplier

0. 0000
1. 0000
0. 1800

3
0.2979
0. 0106
0.9700

using nmultiplier

0. 0000
1. 0000
0. 0000

3

0. 2979
0. 0106
0.9681

1. 0000
- 0. 3000
- 0. 1000

in colum 2 of [A]:

0.7021
1.9894
-0.6100

0. 1800 above;

0.7021
1.9894
-0. 9681

1. 0000
-0.3191
- 0. 1000

rows using a nultiplier:
0. 2000 above;

[AY]

1. 0638
-0.3191
- 0. 1000

[AY]

1.0638
-0.3191
-0. 0426

. 0000
. 0000
. 0000

o RO

. 0000
. 0638
. 0000

O -0

becones:

-0.2128
1. 0638
0. 0000

becones:

-0.2128
1.0638
-0. 1915

~ This column has been reduced to the form seen in an identity matrix.

in colum 3 of [A]:
n= 3
[AY] becones:

1 2 3
1 1. 0000 0. 0000 0.2979
2 0. 0000 1. 0000 0. 0106
3 0. 0000 0. 0000 0. 9681
Find the | argest coefficient
The abs(max) = 0.9681 at
Dividing row 3 by 0. 9681,
1 2 3
1 1. 0000 0. 0000 0. 2979
2 0. 0000 1. 0000 0. 0106
3 0. 0000 0. 0000 1. 0000
No row swapping needed - step skipped.
Subtract row 3 fromthe other
Reduce row 1 wusing multiplier
1 2 3
1 1. 0000 0. 0000 0. 0000
2 0. 0000 1. 0000 0.0106
3 0. 0000 0. 0000 1. 0000
Reduce row 2 using nmultiplier
1 2
1 1. 0000 0. 0000 0. 0000
2 0. 0000 1. 0000 0. 0000
3 0. 0000 0. 0000 1. 0000

0.7021
1.9894
-0. 9681

0.7021
1.9894
-1. 0000

1. 0000
1.9894
-1. 0000

0. 0106 above;

1. 0000
2.0000

-1. 0000

1. 0638
-0.3191
-0. 0426

1. 0638
-0.3191
- 0. 0440

rows using a nultiplier
0. 2979 above;

[AY]

1.0769
-0.3191
- 0. 0440

[AY]

1.0769
-0. 3187

- 0. 0440

-0.2128
1. 0638
-0.1915

-0. 2128
1. 0638
-0.1978

becones:

-0. 1538
1. 0638
-0.1978

becones:

- 0. 1538
1. 0659

-0.1978

. 0000
. 0000
. 0000

= OO

. 0000
. 0000
. 0000

= oo

o

. 0000
. 0000
1. 0000

o

o

. 0000
. 0000
1. 0000

o

. 0000
. 0000
1. 0000

[oNe]

. 0000
. 0000
. 0330

= OO

-0. 3077
0. 0000
1. 0330

-0. 3077
-0.0110

1. 0330

~ This column has been reduced to the form seen in an identity matrix.
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*** 'mlst Use. exe' - the solution of your input [A'Y] is: ***

[1:X] =
1 2 3 Answer #1: & The i nverse
1 1. 0000 0. 0000 0. 0000 1. 0000 1.0769 -0. 1538 -0.3077
2 0. 0000 1. 0000 0. 0000 2. 0000 -0. 3187 1. 0659 -0.0110
3 0. 0000 0. 0000 1. 0000 -1. 0000 -0. 0440 -0.1978 1.0330
Per p#1 Per p#2 Per p#3

Note: Thelisting order of the equations doesn’t affect Answer#1, but Swaps the columns of theinverse
Here the inverse is unchanged because the rows of the appended | were re-ordered along with the equations.

The Answers for each of your "L-CQutput® colums:
Answers for colum 1: Answer#1

Unknown 1= 1. 000000000000
Unknown 2= 2.000000000000
Unknown 3= -1. 000000000000
Answers for colum 2: Perp#l

Unknown 1= 1. 076923076923
Unknown 2= -0.318681318681
Unknown 3= - 0. 043956043956
Answers for colum 3: Perp#2

Unknown 1= -0.153846153846
Unknown 2= 1. 065934065934
Unknown 3= -0.197802197802
Answers for colum 4: Perp#3

Unknown 1= -0. 307692307692
Unknown 2= -0.010989010989
Unknown 3= 1. 032967032967

Done: 09-09-2011 15:03: 54.

The input datafile: “M1USEIN.TXT” first/top dataset used above: (expanded listing: pages 32-33)
3, 3, 4

0. 30, 1. 00, 0. 10, 2. 20, 0.0, 1.0, 0.0
1. 00, 0. 20, 0. 30, 1.10, 1.0, 0.0, 0.0
0. 10, 0. 20, 1.00, -0.50, 0.0 0.0, 1.0

Unused information foll ows.
Exanpl e vsn 0.50 ~Page 3: 3 equations, 3 unknowns, 4 outputs
Thisislike the opening example on page 3,
but rows 1 & 2 areinterchanged (including I) to demonstratethe row swapping.

Hyperspace Algebra Tools version 0.50 Page 27 of 54 September 14", 2011



The BASIC source code: “M 1stUse.bas” follows.
The ~42 lines of code that actually solve [A:Y] arein black bold print.

DECLARE SUB Print AY (nUnk% MCol %

Y e e
REM Pr ogram Mlst Use. bas version 0.50 2011.09.09 Jeff Setterholm

REM Correct nunerical exanples reduce debug time when witing al gorithns.
CLS

CLCSE #14

PRI NT " MLst Use. exe version 0.50 2011. 09. 09 IM5"
PRI NT ""

PRI NT " “Matrix 1st Use - An Introductory Matrix Solver, "
PRI NT " written in BASIC. Solves [A'Y]. "

PRI NT " The QuickBasic 4.5 source code is provided."
PRI NT "MlstUse.exe is limted to:"

PRI NT " 1. kEquations=nUnknowns, "

PRI NT " 2. Linearly independent equations, and"

PRI NT * 3. Solution left-to-right across the matrix."
PRI NT " "

PRI NT " Mlst Use. exe: "

PRI NT * Reads the first (top) dataset in 'MJSEIN TXT "
PRI NT " Wites output/results to: " MLUSEQUT. TXT" "
PRI NT ""

PRINT " ( MJse.exe is a nore powerful matri x sol ver,"
PRI NT " but is nore conplicated as a result. )"
PRI NT ™"

PRI NT " Thi s program nmay have errors.”

PRI NT * I nput data may be mis-interpreted.”

PRI NT " USE THI S PROGRAM ONLY AT YOUR OWN RI SK. "

PRINT " Type "A to accept the risks or '"Q to quit:";
| NPUT Accept $

| F Accept$ = "A" GOTO 10

|F Accept$ = "a" GOTO 10

END

10 REM

PRI NT "Opening file ' MIUSEQUT. TXT' for output:"
OPEN " MLUSEQUT. TXT" FOR OUTPUT AS #14

PRI NT #14, "OQutput of: 'MlstUse.exe' version 0.50 2011.09.09 Jwms"
PRI NT #14, ""

PRI NT #14, " The program nmay have errors."

PRI NT #14, " I nput data may have been m s-interpreted.”

PRI NT #14, " USE THI S PROGRAM S RESULTS ONLY AT YOUR OWN RI SK. "
PRI NT #14, "*"

PRI NT "Opening file ' MUSEIN. TXT' for input:"

PRI NT #14, "Opening file ' MJSEIN. TXT" for input: o
PRI NT #14, USING " Run: & &"; DATES$; Tl MES$

OPEN "MUSEI N. TXT" FOR | NPUT AS #12

REM - - -
REM Qui ckBASI C 4.5 synt ax:
REM ' :text follow ng an apostrophe is a "Remark" (not conpiled);

variables ending in %are 16-bit integers;
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| vari ables ending in # are 64-bit double precision floating point nunbers;
) B4.5 is ~ not case sensitive.
'l use variable nanes starting with i,j,k,I,m&n for integers.
I NPUT #12, kEqu% nUnk% LCQut%
PRI NT #14, USI NG "K-Equations: ##"; KEqQu%
PRI NT #14, USING "N-Unknowns : ##"; nUnk%
PRI NT #14, USING "L-Cutputs ##"; LOut %
I F (kEqQu% <> nUnk% THEN
PRI NT "The nunber of Equations nust equal the nunber of Unknowns. Halt."
PRI NT #14, "The nunber of Equations nust equal the nunber of Unknowns. Halt."
REM STOP
END

END I F ' (KEQU¥%<>nUnk%)

PRI NT #14, "kEquations = nUnknowns"
PRI NT #14, ""
PRI NT #14, "[A'Y] will be solved left-to-right."

MCol % = nUnk% + LOut %
DI M AY#(nUnk% MCol %

' MCol %= total numnber

FOR k% = 1 TO kEqu%
FOR n% = 1 TO MCol %

I NPUT #12, AY#(k% nPQ
NEXT ntb
NEXT k%
PRINT "Closing file ' MJSElIN. TXT" ."
CLOSE #12
PRI NT #14, "lnput from'MJseln. Txt':";
PRI NT #14, " (Trailing commas cause read errors.)"

CALL Print AY(nUnk% MCol %

REM Sol ve AY#[]=[A Y] left-to-right:

PRI NT #14, "Set the noise floor:"
Val M n# = ABS(AY#(1, 1))
FOR n% = 1 TO nUnk%
FOR no= 1 TO nUnk%
| F (Val M n# < ABS(AY#(n%
Val M n# = ABS(AY#(n%
END | F
NEXT no
NEXT n%
Val M n# = Val M n# / 100000000#
PRI NT #14, USI NG "Val M n=######. #H##H#HTHHR#HEHAR"
PRI NT #14, “”

n%)) THEN
g )

Val M n#

FOR Next Col % = 1 TO nUnk%
PRI NT #14, USING "-----
CALL Print AY(nUnk% MCol %

PRI NT #14, USING "Find the |argest
Val Max# = Val M n#
nRowivbax% = 0
FOR nRowTest % = Next Col % TO nUnk%
| F (ABS(Val Max#) < ABS(AY#( nRowTest %
Val Max# AY#( nRowTest %
nRowivax % nRowTest %
END | F
NEXT nRowTest %

coeff. in colum ## of

Next Col %9)) THEN
Next Col %9
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| F (nRowMax% = 0) THEN
PRI NT "The input equations are |inearly dependent."
PRI NT #14, "The input equations are |inearly dependent. Halt."
PRINT "Closing file ' MIUSEOUT. TXT' . "

CLOSE #14

PRINT "Halt."

END
END | F ' ( nRowiVax%=0)
PRI NT #14, USI NG "The abs(max) = ##H#HE, #HEH" ; Val Max#,
PRI NT #14, USING " at  n=##"; nRowvax%

| F (Val Max# <> 1#) THEN
PRI NT #14, USING "Dividing row ## by ######. ####,"; nRowMax% Val Max#;
PRI NT #14, " J[A:Y] becones:"
FOR nfo= 1 TO MCol %
AY#(nRowivax% nPH = AY#(nRowMax% n?9 / Val Max#

NEXT ntb

CALL Print AY(nUnk% MCol %

ELSE

PRI NT #14, "No division needed - step skipped."”
PRI NT #14, ""

END | F ' (Val Max#<>1#)

| F (nRowivax% <> Next Col %9 THEN
PRI NT #14, USI NG "Swapping row ## w th row ##:"; nRowMax% Next Col %
PRI NT #14, " [AY] becones:"
FOR n = 1 TO MCol %
Al# = AY#(nRowvax% ntg
AY#(nRowMvax% nPd = AY#(Next Col % nPh
AY#( Next Col % nP§ = Al#

NEXT nb

CALL Print AY(nUnk% MCol %

ELSE

PRI NT #14, "No row swappi ng needed - step skipped."
PRI NT #14, ""

END | F ' (nRowmvax%<>Next Col %9

PRI NT #14, USING "Subtract row ## fromthe other rows"; NextCol %
PRI NT #14, " using a nmultiplier:"
FOR n% = 1 TO nUnk%
I F (n% <> Next Col %9 THEN
Val Next# = AY#(n% Next Col %
FOR nm = 1 TO MCol %
AY#(n% nPH = AY#(n% nPH - Val Next# * AY#( Next Col % n?g

NEXT nb

PRI NT #14, USI NG "Reduce row ## "; n%

PRI NT #14, USING " using nultiplier #####. #### above; "; Val Next#;
PRI NT #14, " [A'Y] becomes:”

CALL Print AY(nUnk% MCol %
END I F ' (n%<>Next Col %9
NEXT n%
NEXT Next Col %
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"k ok ok

PRI NT #14, ''mlst Use. exe'
PRI NT #14, "[1:X]
CALL Print AY(nUnk%
IF (LQut% > 0) THEN
PRI NT #14, "The Answers for
FOR L% =1 TO LOut %
PRI NT #14, USING "Answers for
FOR n% = 1 TO nUnk%

MCol %)

PRI NT #14, USI NG " Unknown###=",

PRI NT #14, USING "
NEXT n%
PRI NT #14,
NEXT L%
END | F ' (LOut % > 0)

PRI NT #14, USING "Done: & & ";

each of your

BHEHBHEHE . HHHBHBHBHBHR"

- the solution of your

“L-Qut put®
colum ##:"; L%

n%

DATES; TI MES$

PRINT "Closing file ' MIUSEQUT. TXT' . "

PRI NT USI NG " Done:
CLCSE #14
END
REM
SUB Print AY (nUnk%
SHARED AY#()
PRI NT #14, " "
FOR m = 1 TO nUnk%
PRI NT #14, USI NG " ######
NEXT ntb
PRI NT #14, " "
FOR n% = 1 TO nUnk%
PRI NT #14, USI NG "##";
FOR nto= 1 TO MCol %

& &

MCol %

n%

PRI NT #14, USI NG " ######. ##H##" ,

NEXT ntb
PRI NT #14,
NEXT n%
PRI NT #14,
END SUB

Press escape.";

;A

AY#(Nn% nPH;

i nput [ArY] is: ***"

colums: "

AY#(Nn% nUnk% + L%

DATES$; TI MES$
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The input datafile: “MJSEIN TXT": Used by both “Mlst Use. exe” & “MJse. exe”
3, 3, 4
0. 30, 1. 00, 0. 10, 2. 20, 0.0, 1.0, 0.0
1. 00, 0. 20, 0. 30, 1. 10, 1.0, 0.0, 0.0
0. 10, 0. 20, 1.00, -0.50, 0.0, 0.0, 1.0
Unused information follows.
Exampl e vsn. 0.50 ~Page 3: 3 equations, 3 unknowns, 4 outputs... [AY]

but rows 1 & 2 are interchanged (including I)
to show row swappi ng.

- Row swappi ng restores the origina

and the sol ution proceeds.

is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) =Y

Test datasets for: MlstUse. bas/.exe version 0.50

Openi ng exanpl e -
exanpl e

The test case pol ynoni al

2011.09. 09 Jeff Setterhol m

(A sinple matrix solver for kEquati ons=nUnknowns.)

and: MJse. bas /.exe version 0.50
(An OverWiting matrix solver.)
ABoth these progranms relate to Hat.pdf version 0.50

Only the top dataset is read and used.

Note: Trailing commas will cause data m sreads.
The testcase polynomal is: 1.0%*X(1) + 2.0*X(2) - 1.0*X(3) =Y
3, 3, 4
1. 00, 0. 20, 0. 30, 1.10, 1.0, 0.0, 0.0
0. 30, 1. 00, 0. 10, 2. 20, 0.0, 1.0, 0.0
0. 10, 0. 20, 1.00, -0.50, 0.0, 0.0, 1.0
Unused information follows.
Exanmpl e vsn. 0.50 ~Page 3: 3 equations, 3 unknowns, 4 outputs... [AY]
Openi ng exanpl e
The test case polynomial is: 1.0%X(1) + 2.0*X(2) - 1.0*X(3) =Y
3, 3, 4
1. 00, 0. 20, 0. 30, 1.10, 1.0, 0.0, 0.0
0. 30, 1. 00, 0. 10, 2. 20, 0.0, 1.0, 0.0
1.14, -2.78, 0.31, -4.73, 0.0, 0.0, 1.0
Unused information follows.
Appendi x B's TestCase for MJse. exe: Linear Depencence
Exanpl e vsn 0.50 ~Page 21: 4 equations, 3 unknowns, 1 output... J[AY]
The testcase polynomal is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) =Y
12, 12, 1
1., 1. , 1 , 0.20, 0.20, 0.20, 0.30, 0O0.30, 0.30, 0.06, 0.06, 0.06, 1.1
1., 0. 3, 0.09, 1. , 0.3, 0.09, 0.2, 0.03 0.009 0.2, 0.03 0.009 22
1., 0.1, 0.01, 0.2, 0.02, 0.002, 2. , 0.1, 0.012, 0.2, 0.02, 0.002,-0.5
1., -1, 1 , 03, -0.3, 03, 02, -0.2, 0.2 , 0.06, -0.06, 0.06,-0.6
1., 0.5, 0.25, -1 , -0.5, -0.25, -0.3, -0.15, -0.075, 0.3, 0.15, 0.075,-1.2
1., -1, 1 , 0. , 0. , 0. , 2 , -2. , 2 , 0. , O , 0. ,-3.0
1., -1, 1 , 0.5, -0.5, 05, -2 , 2., -2 -1, 1. ., -1 , 2.0
1., -1, 1 , 0.5, -05, 05, 2 , -2, , 2 , 1., -1 1. ,-2.0
1., 1., 1 , -0.5, -0.5, -0.5, -2 , - 2. , -2 , 1. , 1 , 1. , 2.0
1., 0. , 0 , 0.5, 0. , 0 , -2 , 0. , O ,-1. , 0 , 0. , 3.0
1., 1., 1 , -0.5, -0.5, -0.5, 2. , 2. , 2 -1, -1 ., -1 ,-2.0
1., 1., 1 , 05, 05, 05, -2. , -2. , -2 ,-1. ., -1 ., -1 , 4.0
Unused information fol |l ows.
X(1) 1 X(2) "~ X(3)"1 Y
XIX2X3 X1IX2X3 X1X2X3 X1X2X3 X1IX2X3 XIX2X3 XIX2X3 XIX2X3 XIX2X3 X1IX2X3 X1X2X3 X1X2X3: 'Y
AQMNOMNO ALAOMNO A27207N0 AOMLINO ALNMINO A271N0 AONOMND AMLNONL A2707M1 AOMINT AMININT A2MIND
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Exanpl e vsn 0.50 ~Page 12: 12 of the 27 equations, 12 unknowns, 1 outputs
These are some of the polynonial partial derivatives and outputs of a testcase pol ynonial.
The test case polynonmial is: 1.0*X(1) + 2.0%*X(2) - 1.0*X(3) =Y

5 3 1

1.0, 0.2, 0.3, 1.1
0.3, 1.0, 0.1, 2.2
0.1, 0.2, 1.0, -0.5
-1.0, 0.3, 0.2, -0.6
0.5, -1.0, -0.3, -1.2

Unused information follows.
Exanmpl e vsn 0.50 ~Page 6: 5 equations, 3 unknowns, 1 outputs ... [B:Z]
Mor e equati ons than unknowns
The testcase polynom al is: 1.0%*X(1) + 2.0*X(2) - 1.0*X(3) = Z

27, 3, 1
1.0, 02, 0.3, 1.1
0.3, 10, 01, 22
0.1, 0.2, 1.0, -0.5
-1.0, 0.3, 0.2, -0.6
0.5, -1.0, -0.3, -1.19
-1.00, 0.00, 2.00, -3.00
-1.00, 0.50, -2.00, 2.00
-1.00, 0.50, 0.00, o0.00
-1.00, 0.50, 2.00, -2.00
0.00, -0.50, -2.00, 1.00
0.00, -0.50, 0.00, -1.00
0.00, -0.50, 2.00, -3.00
0.00, 0.00, -2.00, 2.00
0.00, 0.00, 0.00, 0.00
0.00, 0.00, 2.00, -2.00
0.00, 0.50, -2.00, 3.00
0.00, 0.50, 0.00, 1.00
0.00, 0.50, 2.00, -1.00
1.00, -0.50, -2.00, 2.00
1.00, -0.50, 0.00, 0.00
1.00, -0.50, 2.00, -2.00
1.00, 0.00, -2.00, 3.00
1.00, 0.00, 0.00, 1.00
1.00, 0.00, 2.00, -1.00
1.00, 0.50, -2.00, 4.00
1.00, 0.50, 0.00, 2.00
1.00 0.50, 2.00 0. 00

Unused i nformati on foll ows.
X(1) X(2) X(3) Y

Exanmpl e vsn 0.50 ~Page 11: 27 equations, 3 unknowns, 1 outputs... [B:Z]
equat i ons>unknowns; dataset with Y(5) noise.
The testcase polynomal is: 1.0*X(1) + 2.0*X(2) - 1.0*X(3) = Z

N Thisisapartid listing. For the full listing, download:
http://ftp.setterholm.com/Pseudolnverse/AppendixA/MUseln.txt
as well as: /M1stUse.bas,
/M1stUse.txt ,
& /milstUse.exe

End of Appendix A: An Introductory Matrix Solver
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Appendix B: Matrix Solver Details

The BASIC sour ce code of “M Use.bas/.exe:
A Matrix Pseudol nverter, OverWriter, & Linear Dependence Eliminator.

http://ftp.setterholm.com/Pseudolnverse/AppendixB includes:

09/ 14/ 2011 09:38 AM 21, 297 MJse. bas ...listed here
09/ 14/ 2011 09:39 AM 53, 448 MUSE. EXE

09/ 09/ 2011 03:08 PM 9,711 MJUSEI N. TXT

09/ 14/ 2011 09:39 AM 7,785 MJUSEQUT- Appendi xB. TXT ...listed here
09/ 14/ 2011 07:54 AM 9, 119 MUSEQUT- Page6Exanpl e. TXT

08/ 09/ 2011 08:36 AM 1,205 _St Dos. bat

Pages 34 thru 37 are “MUseOut.txt”;
pages 38 thru 47 are : “M Use.bas’

“MUseOut.txt” :

Output of: "MUse.exe* version 0.40 Run: 09-14-2011 09:39:38

A Matrix OverWriter & Linear Dependence Eliminator in action...

The program may have errors.
Input data may have been mis-interpreted.
USE THIS PROGRAM®"S RESULTS ONLY AT YOUR OWN RISK!

This output is iIntended to be useful as "TestCase Data“
in writing and debugging your own Matrix OverWriter code
in your computer language of choice.

Opening Ffile "MUSEIN.TXT®" for input: Run: 09-14-2011 09:00:24
K-Equations: 3
N-Unknowns : 3
L-Outputs :© 1
Your input matrix: (Trailing commas cause read errors.)
1 2 3

1 1.000000 0.200000 0.300000 1.100000

2 0.300000 1.000000 0.100000 2.200000

3 1.140000 -2.780000 0.310000 -4_.730000

.. this is the problem on page 21.
--- Entering: kEquations = nUnknowns; solve directly: ---
Coefficients: The Outputs

Your input: [ [A] : [Y1l 1
solving: [ [A] : LYl 1
yielding: [ [AT] : X1 1
i.e.: The iInverse:The Answers

...an "~exact fit" if [A] is linearly independent.

Matrix to be solved:

1 2 3

1 1.000000 0.200000 0.300000 1.100000

2 0.300000 1.000000 0.100000 2.200000

3 1.140000 -2.780000 0.310000 -4.730000

-—- Entering Subroutine OverWriter(): ---

Set the noise floor:
ValMin= 0.000000027800000
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*** Top of the loop: Iteration 1: ***
-1 -2 -3
-1 1. 000000 0. 200000 0. 300000 1. 100000
-2 0. 300000 1. 000000 0. 100000 2.200000
-3 1. 140000 -2.780000 0. 310000 -4, 730000
The abs(max) = -2.7800 at n= 3 nr 2
Det . Product = -2.780000
Divide row 3 hy -2.7800
-1 2 -3
-1 1. 000000 0. 200000 0. 300000 1. 100000
-2 0. 300000 1. 000000 0. 100000 2.200000
3 -0.410072 1. 000000 -0.111511 1.701439
Swap row 3 wth row 2:
-1 2 -3
-1 1. 000000 0. 200000 0. 300000 1. 100000
3 -0.410072 1. 000000 -0.111511 1.701439
-2 0. 300000 1. 000000 0. 100000 2.200000
Swap colum 2 wth colum 3:
-1 -3 2
-1 1. 000000 0. 300000 0. 200000 1. 100000
3 -0.410072 -0.111511 1. 000000 1.701439
-2 0. 300000 0. 100000 1. 000000 2.200000
Subtract iPivot row 2 fromthe other rows using a nultiplier:
Reduce row 1 using nultiplier 0. 2000 above:
-1 -3 2
-1 1. 082014 0. 322302 0. 000000 0. 759712
3 -0.410072 -0.111511 1. 000000 1.701439
-2 0. 300000 0. 100000 1. 000000 2.200000
Reduce row 3 wusing nultiplier 1. 0000 above:
-1 -3 2
-1 1. 082014 0. 322302 0. 000000 0. 759712
3 -0.410072 -0. 111511 1. 000000 1.701439
-2 0.710072 0.211511 0. 000000 0. 498561
and OverWite the inverse in colum 3 [A:Y] becones:
-1 -3 2
-1 1. 082014 0. 322302 0.071942 0. 759712
3 - 0. 410072 -0.111511 -0. 359712 1.701439
-2 0. 710072 0. 211511 0. 359712 0. 498561
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*** Top of the loop: Iteration 2: ***

-1 -3 2
-1 1. 082014 0. 322302 0. 071942 0. 759712
3 -0.410072 -0.111511 -0. 359712 1.701439
-2 0. 710072 0.211511 0. 359712 0. 498561
The abs(max) = 1.0820 at n= 1 n= 1
Det . Product = - 3. 008000
Divide row 1 by 1.0820
1 -3 2
1 1. 000000 0.297872 0. 066489 0.702128
3 -0.410072 -0.111511 -0. 359712 1.701439
-2 0. 710072 0.211511 0. 359712 0. 498561

No row swappi hg needed - step skipped.
No col um swappi ng needed - step ski pped.

Subtract iPivot row 1 fromthe other rows using a nult
Reduce row 2 wusing nultiplier -0.4101 above:
1 -3 2
1 1. 000000 0.297872 0. 066489 0.702128
3 0. 000000 0. 010638 - 0. 332447 1.989362
-2 0. 710072 0.211511 0. 359712 0. 498561
Reduce row 3 wusing multiplier 0.7101 above:
1 -3 2
1 1. 000000 0.297872 0. 066489 0.702128
3 0. 000000 0. 010638 - 0. 332447 1. 989362
-2 0. 000000 0. 000000 0. 312500 - 0. 000000
and OverWite the inverse in colum 1 [A:Y] becones:
1 -3 2
1 0. 924202 0.297872 0. 066489 0.702128
3 0. 378989 0. 010638 - 0. 332447 1. 989362
-2 -0. 656250 0. 000000 0. 312500 - 0. 000000
*** Top of the loop: lteration 3: ***
1 -3 2
1 0. 924202 0.297872 0. 066489 0.702128
3 0. 378989 0.010638 - 0. 332447 1. 989362
-2 - 0. 656250 0. 000000 0. 312500 - 0. 000000

The i nput equations are |inearly dependent.
Negati ve indices indicate dependent rows & col ums.
Overwiter inverse zero-ing uses the negative indices.

Sal vaging a linearly-independent subset of [Ai] as [Ad]:

1 -3 2
1 0.924202 0. 000000 0. 066489 0.702128
3 0. 378989 0. 000000 - 0. 332447 1. 989362
-2 0. 000000 0. 000000 0. 000000 0. 000000
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*** Solver's results: ***

Det erm nant = -3.008000
Rank = 2
1 -3 2
1 0.924202 0. 000000 0. 066489 0.702128 = A
3 0. 378989 0. 000000 -0. 332447 1.989362 = B
-2 0. 000000 0. 000000 0. 000000 0.000000 = C
|-=--mmm e mememeee- [Ai] with  ---m-mmeemmmeee- |-- Answer#1 --|
linear dependence eliminated.
OverWiter Check: [Ap]*[A] = [I] ? No.
1 -3 2
1 1. 000000 0. 000000 - 0. 000000
3 0. 656250 0. 000000 -0. 312500
-2 0. 000000 0. 000000 1. 000000
OverWiter Check: [Al*[Ap] = [I] ? No.
1 -3 2
1 1. 000000 - 0. 000000 0.297872
3 - 0. 000000 1. 000000 0. 010638
-2 0. 000000 0. 000000 0. 000000
--- Exiting Subroutine OverWiter(): ---
--- Entering Subroutine ErrorEval (): ---
*** Answers & Error evaluation: ***
Answers for colum 1:
Unknown 1= 0.702127659574 = 7.021276595745D- 001
Unknown 2= 1.989361702128 = 1.989361702128D+000
Unknown 3= 0. 000000000000 = 0. 000000000000D+000
Error evaluation for colum 1:
Equati on: Yconmputed - Yin = Yerr or
1: 1.100000000 1.100000000 0. 000000000 = 0.000000000D+000
2: 2.200000000 2.200000000 0. 000000000 = 0. 000000000D+000
3: - 4. 730000000 - 4. 730000000 0. 000000000 = 0.000000000D+000
RVS error= 0. 000000000 = 0.000000000D+000

--- Exiting Subroutine ErrorEval (): ---

[A]*[A =111 ? No.

1 2 3
1 1. 000000 - 0. 000000 0.297872
2 - 0. 000000 1. 000000 0. 010638
3 0. 000000 0. 000000 0. 000000

...the significance is explained on page 22.

[AlI*[A] =11 2 No.

1 2 3
1 1. 000000 0. 000000 - 0. 000000
2 0. 656250 0. 000000 -0. 312500
3 0. 000000 0. 000000 1. 000000

...the significance is explained on page 22.

--- Exiting: KkEquations = nUnknowns ---
Done: 09-14-2011 09:39:38 - closing MUSEOUT. TXT -------------------------~----~-~-----
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:“MUsebas’:

DECLARE SUB PrintAY (nRows% nCol s% AYsee#())

DECLARE SUB OverWiter (nUnk% nCol % AY#())

DECLARE SUB ErrorEval (kEqu% nUnk% nCol % LOut% i AX1BZ2%

DECLARE SUB Print owAY (nRows% ntCol s% AYsee#(), nUsed% ), mJsed%))

REM - - - - oo s o e e e e e oo
REM Pr ogram MJse. bas version 0.50 2011.09.14 Jeff Setterholm

REM BASI C conpi | ers are ubi quitous.
REM Correct numerical exanpl es reduce debug tinme when witing al gorithns.
CLS

CLCSE #14

PRI NT "MJse. exe version 0.50 2011. 09. 14 JM5"

PRI NT ""

PRI NT * “Matrix Use' - a matrix solver. "

PRINT "A Matrix OverWiter & Linear Dependence Elimnator... in action.”

PRI NT " Witten in BASIC. Solves [A'Y] = itself (equat i ons=unknowns) "
PRI NT " -or- "
PRI NT " = [ Bt *B: Bt *Z] (Pseudol nverse). "
PRI NT " The QuickBasic 4.5 source code is provided."

PRI NT ™"

PRI NT * The output is intended to be useful as 'TestCase Data'"

PRI NT " in witing and debuggi ng your own Matrix OverWiter code"

PRI NT * i n your computer |anguage of choice."

PRI NT ""

PRI NT "MJse. exe:"

PRI NT " Reads the first (top) dataset in ' MJUSEIN TXT" "

PRI NT " Wites output/results to: " MUSEQUT. TXT' "

PRI NT ""

REM --- Cautions & Acknow edgenent: ---

PRI NT " Thi s program nmay have errors.”

PRI NT * | nput data may be nmis-interpreted.”

PRI NT " USE THI S PROGRAM ONLY AT YOUR OWN RI SK. "

PRINT " Type "A" to accept the risks or '"Q to quit:";
| NPUT Accept $
IF ((Accept$ <> "A") AND (Accept$ <> "a")) THEN END

PRI NT ""
PRI NT "Opening file ' MIUSEQUT. TXT' for output:"”
OPEN "MJSEQUT. TXT" FOR OUTPUT AS #14

PRI NT #14, "CQutput of: 'MJse. exe' version 0.50 2011.09.14 JMs"

PRI NT #14, ""

PRI NT #14, "A Matrix OverWiter & Linear Dependence Elim nator in action..."
PRI NT #14, ""

PRI NT #14, " The program may have errors.”

PRI NT #14, " I nput data may have been m s-interpreted.”

PRI NT #14, " USE THI S PROGRAM S RESULTS ONLY AT YOUR OWN RI SK!'"

PRI NT #14, ""

PRI NT #14, " This output is intended to be useful as 'TestCase Data'"
PRI NT #14, " in witing and debuggi ng your own Matrix OverWiter code"
PRI NT #14, " in your computer |anguage of choice."

PRI NT #14, ""

REM --- BEnd C&A. ---
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PRI NT "Opening file ' MUSEI N. TXT' for input:”
PRI NT #14, "Opening file 'MJSEIN. TXT" for input: "

PRI NT #14, USING " Run: & &"; DATES$; TIMES$

REM - - -

REM Qui ckBASI C 4.5 synt ax:

REM ' :text follow ng an apostrophe is a "Renmark" (not conpiled);

variables ending in %are 16-bit integers;

' variables ending in # are 64-bit double precision floating point nunbers;
' B4.5 is ~ not case sensitive.

"I use variable nanes starting with i,j,k,I,m&n for integers.

OPEN "MUSEI N. TXT" FOR | NPUT AS #12 '-- Data input:
I NPUT #12, kEqu% nUnk% LOut%
PRI NT #14, USING "K-Equations: ##"; KEqQu%
PRI NT #14, USI NG "N-Unknowns : ##"; nUnk%
PRI NT #14, USING "L-CQutputs : ##"; LQut%

nCol % = nUnk% + LOut % "nunber of Col ums.
kEqQu2% = KEqQu% "avoids "variable ailiasing"
nUnk2% = nUnk% ' in calls to subroutines.
IF (KEQU% = nUnk% THEN " -------mcmmmmeme e o - kEquat i ons=nUnknowns:
DI M AY#( nUnk% ntCol % "Continue with data read:

FOR n% = 1 TO nUnk%
FOR no= 1 TO nCol %
I NPUT #12, AY#(n% nPh

NEXT ntb

NEXT n%

PRINT "Closing file ' MUSEIN. TXT' ."
CLCSE #12 "Data read conpl et ed.
PRI NT #14, "Your input matrix: (Trailing commas cause read errors.)"
CALL Print AY(nUnk% ntCol % AY#()) "Print the input matrix:
PRI NT #14, "--- Entering: kEquations = nUnknowns; solve directly: ---"
PRI NT #14, " Coefficients: The Qutputs "
PRI NT #14, "Your input: [ [ Al : [Y] 1"
PRI NT #14, " solving: [ [ Al : [Y] 1"
PRI NT #14, ""
PRI NT #14, " vyielding: [ [A] : [ X] 1"
PRI NT #14, " i.e.: The inverse: The Answers "
PRI NT #14, " ...an "~exact fit' if [A] is linearly independent."”
PRI NT #14, ""

PRI NT #14, "Matrix to be sol ved:"
CALL Print AY(kEqu% nTCol % AY#())

DI M Al X#(nUnk% nCol % '-- Solve the equations:
FOR n% = 1 TO nUnk%
FOR n = 1 TO nCol %

Al X#(n% nPh = AY#(n% ntQ 'Saves [A'Y] for use bel ow
NEXT b
NEXT n%
CALL OverWiter(nUnk% nCol % A X#()) "Solves [A: X] (<-[AY])
IF (LQut% > 0) THEN 'Eval uate the accuracy:
i AX1BZ2% = 1

CALL ErrorEval (kEqu% nUnk% nmCol % LQut% i AX1BZ2%
END I F ' (LQut put s>0)
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REM - - - - - -
PRI NT #14, "[A]*[A =[I] ?"
DI M Ai A#(nUnk% nUnk2%
FOR n% = 1 TO nUnk% "TA A =[A]*[ A
FOR nfo= 1 TO nUnk%
FOR nn = 1 TO nUnk%
Al AH(N% nPh = ALA#(N% gy + A X#(n% nmdg * AY#(nnPh nPQ
NEXT nnb
NEXT nb
NEXT n%
CALL Print AY(nUnk% nUnk2% Ai A#())
ERASE Ai A#

PRI NT #14, ""
PRI NT #14, "[A*[A] =T[I] 2"
DI M AAi #( nUnk% nUnk2%
FOR n% = 1 TO nUnk% "TAA]=[Al*[A]
FOR n% = 1 TO nUnk%
FOR nnt = 1 TO nUnk%
AAI #(n% nPh = AAT#(n% nmh + AYH(n% nnPg * A X#(nnPe nfg
NEXT nnfb
NEXT nb
NEXT n%
CALL Print AY(nUnk% nUnk2% AAi #())
ERASE AAi #

ERASE AY#
ERASE Ai X#

PRI NT #14, "*"
PRI NT #14, "--- Exiting: kEquations = nUnknowns ---"

ELSE " ------mmmm i m e e kEquat i ons<>nUnknowns:
DI M BZ#( kEqu% nCol % "Continue with data read:
FOR K% = 1 TO kEqu%

FOR nm6 = 1 TO nCol %
| NPUT #12, BZ#(K% n®9

NEXT b

NEXT K%

PRINT "Closing file ' MJUSEIN TXT' ."
CLOSE #12 "Data read conpl et ed.
PRI NT #14, "Your input matrix: (Trailing commas cause read errors.)"
CALL Print AY(kEqQu% ntCol % BZ#()) "Print the input matrix:
PRI NT #14, "--- Entering: kEquations <> nUnknowns ---"
PRI NT #14, ""
PRI NT #14, " Coefficients: The Qutputs "
PRI NT #14, "Your input: [ [ B] : [ Z] 1"
PRI NT #14, "WIIl solve: [ [Bt*B] : [Bt*Z] 1"
PRI NT #14, " as: | [ A : [ Y] 1"
PRI NT #14, ""
PRI NT #14, " vyeilding: [ [AI] [ X] 1"
PRI NT #14, " i.e.: : The Answers "
PRI NT #14, " ...a least-squares best fit  of [Z]."
PRI NT #14, " :oprint: [Bp] = [AI]*[Bt]"
PRI NT #14, " i.e.: The pseudoi nverse of [B]"
PRI NT #14, " : print: [Bp]*[B] =I ? and "
PRI NT #14, " : print: [B]*[Bp]"
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DI M AY#(nUnk% nCol % "Di mension [A'Y]
FOR n% = 1 TO nUnk% '
FOR n% = 1 TO nCol %
AY#(n% gy = O#
FOR K% = 1 TO kEqu% '
AY#(n% Ay = AY#(n% nPh + BZ#(K% n% * BZ#(K% nth
NEXT K%
NEXT nb
NEXT n% '

PRI NT #14, ""
PRI NT #14, "Matrix to be solved: (note: [A] = [Bt]*[B] is symetric)"
CALL Print AY(nUnk% ntCol % AY#())
REM Cal | Gai n2(nUnk% nCol %
DI M Ai X#(nUnk% nTCol %9 '-- Solve the equations:
FOR n% = 1 TO nUnk%

FOR nP6 = 1 TO nCol %

A X#(n% nPh = AY#(n% ntg "Saves [A'Y] for use bel ow
NEXT nb
NEXT n%
CALL OverWiter(nUnk% nCol % A X#()) "Solves [A: X] (<-[AY])

REM Cal | DeGai n2(nUnk% mCol %
REM PRI NT #14, "*** 'MJse.exe' - Solution: ***"
REM CALL Print AY(nUnk% ntCol % AY#())

IF (LQut% > 0) THEN ' Eval uate the accuracy:
i AX1BZ2% = 2
CALL ErrorEval (kEqu% nUnk% nCol % LQut% i AX1BZ2%

END I F ' (LOut% > 0)

REM - - - - - -

PRI NT #14, "Conputing the pseudoi nverse: [Bp]="
DI M Bp#(nUnk% KEqu%

PRI NT #14, "Unknown "

FOR K% = 1 TO kEqu%

PRINT #14, USING " Eqn:##  "; K%

NEXT K%

PRI NT #14, ""

FOR n% = 1 TO nUnk% "IBp] = ([Bt]*[B])i * [Bt]
PRI NT #14, USING "#### "; n%

FOR K% = 1 TO kEqu%
Bp#(n% K% = 0#
FOR nnPo = 1 TO nUnk%
Bp#(n% K% = Bp#(n% K& + A X#(n% nnmPd * BZ#(K¥% nntoy
NEXT nnio
PRI NT #14, USI NG " ######. ######", Bp#(n% K9 ;
NEXT K%
PRI NT #14, ""
NEXT n%
PRI NT #14, ""
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| F (kEqQu% < nUnk% THEN PRI NT #14, "[Bp]*[ B] not [I]"
| F (kEqQu% > nUnk% THEN PRI NT #14, "[Bp]*[ B] [r] »=¢
DI M BpB#( nUnk% nUnk2%
FOR n% = 1 TO nUnk% ' [ BpB] =[ Bp] *[ B]
FOR nfo= 1 TO nUnk%
FOR K% = 1 TO kEqu%
BpB#(n% nPH) = BpB#(n% nPH + Bp#(n% KN * BZ#(K¥% nth
NEXT K%
NEXT nb
NEXT n%
CALL Print AY(nUnk% nUnk2% BpB#())
ERASE BpB#
PRI NT #14, ""

I F (kEqQu% > nUnk% THEN PRI NT #14, "[B]*[ Bp] not [I]"
I F (kEqQu% < nUnk% THEN PRI NT #14, "[B]*[ Bp] [r] =¢
DI M BBp#( kEqu¥% kEqu2%
FOR K% = 1 TO kEqu% ' [ BBp] =[ B] *[ Bp]
FOR k2% = 1 TO kEqu%
FOR nn?6 = 1 TO nUnk%
BBp#( K% k2% = BBp#(K% k2% + BZ#(K% nn?g * Bp#(nntg k2%
NEXT nnto
NEXT k2%
NEXT K%
CALL PrintAY(kEqu% kEqu2% BBp#())
ERASE BBp#

ERASE BZ#
ERASE AY#
ERASE Bp#

PRI NT #14, "--- Exiting: KkEquations <> nUnknowns ---"
END I F

PRI NT #14, ""

PRI NT #14, USING "Done: & & - closing MJUSEQUT. TXT"; DATES$; TI ME$
PRINT "Closing file ' MUSEQUT. TXT' . "

PRI NT USI NG "Done: & & Press escape."; DATES$; TIME$
CLCSE #14

END ' Program MJse. exe - subroutines follow

[ Y R T T i I
SUB ErrorEval (kEqu% nUnk% mCol % LQut% i AX1BZ2%

SHARED Ai X#()

SHARED AY#()

SHARED BZ#()

PRI NT #14, "--- Entering Subroutine ErrorEval (): ---"
PRI NT #14, ""
PRI NT #14, "*** Answers & Error evaluation: ***"
FOR L% =1 TO LQut %
PRI NT #14, USING "Answers for colum ##:"; L%
FOR n% = 1 TO nUnk%
PRI NT #14, USI NG " Unknown###="; n%
PRI NT #14, USI NG " #########. ###aaaaas" ; A X#(n% nUnk% + L9 ;
PRI NT #14, USI NG " = ##. #########H#AH NN A X#(n% nUnk% + L%
NEXT n%
PRI NT #14, ""
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PRI NT #14, USING "Error evaluation for colum ##:."; L%
PRI NT #14, "Equation: Yconputed - Yin = Yerror"
RVS# = 0#
AbsMax# = 0O#
nAbsMax% = 0
FOR K% = 1 TO kEqu%
PRI NT #14, USING "####:";, K%
Fit Val ue# = 0#
FOR n% = 1 TO nUnk%
SELECT CASE (i AX1BZ2%
CASE IS = 1 'KkEquations = nUnknowns
FitValue# = FitValue# + AY#(K% n% * A X#(n% nUnk% + L%
CASE IS = 2 'KkEquations <> nUnknowns
FitValue# = FitVal ue# + BZ#(K% n% * Ai X#(n% nUnk% + L%
END SELECT
NEXT n%
PRI NT #14, USING "  ######. #####H####" , Fi t Val ue#,;
SELECT CASE (i AX1BZ2%
CASE IS =1 "kEquati ons = nUnknowns
PRI NT #14, USING " ######. #########", AY#(KY% nUnk% + L% ;
FitVal ue# = FitValue# - AY#(K% nUnk% + L%
CASE IS = 2 ' kEquat i ons <> nUnknowns
PRI NT #14, USING "  ######. #########", BZ#(KY% nUnk% + L% ;
FitVal ue# = FitVal ue# - BZ#(K% nUnk% + L%

END SELECT
PRI NT #14, USI NG " ######. #########", Fi t Val ue#,
PRI NT #14, USING " = ##. ######### NN Fi t Val ue#

| F ABS( AbsMax#) < ABS(FitVal ue#) THEN
AbsMax# = Fit Val ue#
nAbsMax% = K%

END | F
RMS# = RVS# + FitValue# * FitVal ue#
NEXT K%
RVB# = SQR(RMS# / KEqu%
PRI NT #14, ""
PRI NT #14, " "
PRI NT #14, USING "RMS  error= ######. #H#######" ; RVSH,
PRI NT #14, USING " = ##. ######### """ RVSH#H
I F nAbsMax% > 0 THEN
PRI NT #14, USI NG " ####: " nAbsMax%
PRI NT #14, USING "AbsNax error= ######. #########", AbsMax#;
PRI NT #14, USING " = #i#. ########HNNNANN" 0 AbsMax#
END | F
PRI NT #14, ""
NEXT L%
PRI NT #14, "--- Exiting Subroutine ErrorEval (): ---"
PRI NT #14, ""

END SUB ' ErrorEval ()
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REM - - - - o .

SUB OverWiter (nUnk% nCol % AY#()) "TA Y] ->[A : X
PRI NT #14, "--- Entering Subroutine OverWiter(): ---"
PRI NT #14, ""

DI M nUsed% nUnk%

DI M mJsed% nUnk%

DI M SwapCol um#( nUnk %9

DI M SwapRow#( nCol %

DI M Ast o#(nUnk% nUnk% ' Copy of [A] for evaluating [A]*[A], etc.

nUnk2% = nUnk% "avoids "variable ailiasing”
' in calls to subroutines.

PRI NT #14, "Set the noise floor:"
Val M n# = ABS(AY#(1, 1))
FOR n% = 1 TO nUnk%

nUsed%{ n% = -n%

mMlsed{ n% = -n%

FOR nm% = 1 TO nUnk%

| F Val M n# < ABS(AY#(n% n?9) THEN
Val M n# = ABS(AY#(n% ntg)

END | F
NEXT ntb
FOR n2% = 1 TO nUnk% " Copy [Asto] <- [A]
Ast o#(n% n2% = AY#(n% n2%
NEXT n2%
NEXT n%

Val M n# = Val M n# / 100000000#
PRI NT #14, USI NG "Val M n=######. ###H#####H###H##", Val M n#
PRI NT #14, ""

Det Product # = 1#

FOR Next RowNonte = 1 TO nUnk% "Solving isn't necessarily sequential.
PRI NT #14, " *** Top of the Loop: Iteration ";
PRI NT #14, USING "##:"; Next RowNon®4
PRI NT #14, " x**=
CALL PrintowAY(nUnk% nCol % AY#(), nUsed%), nlUsed%))
REM Fi nd the | argest unused coefficient:
Val Max# = Val M n#
nRowivax% = 0
nCol Max% = 0
FOR nRowTest % = 1 TO nUnk%
| F (nUsed% nRowTest % < 0) THEN
FOR nmCol Test% = 1 TO nUnk%
| F (mJsed% nCol Test% < 0) THEN
| F ABS( AY#(nRowTest % nCol Test% ) > ABS(Val Max#) THEN
Val Max# = AY#(nRowTest % nCol Test %
nRowivax% = nRowTest %
nCol Max% = nCol Test %
END | F
END I F ' (mUsed% nCol Test %9 <0)
NEXT nCol Test %
END I F ' (nUsed% nRowTest %9 <0)
NEXT nRowTest %
| F (nRowMax% = 0) THEN
PRI NT "The input equations are |inearly dependent."
PRI NT #14, "The input equations are |inearly dependent."
PRI NT #14, " Negative indices indicate dependent rows & colums."”
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PRI NT #14, "Overwriter inverse zero-ing uses the negative indices."
PRI NT #14, "Salvaging a |linearly-independent subset of [Ai] as [Ad]:"
FOR n% = 1 TO nUnk%

IF (nUsed%n% < 0) THEN

FOR no= 1 TO nCol % "...elimnating linearly dependent rows
AY#(n% nPh = O#
NEXT nb

END I F ' (nUsed% n% <0)
IF (mJsed%{n% < 0) THEN
FOR n2% =1 TOnUnk% '...elimnating linearly dependent col ums
AY#(n2% n% = O#
NEXT n2%
END I F ' (mJsed% n% <0)
NEXT n%
CALL Print owAY(nUnk% ntCol % AY#(), nUsed%), mJsed%))
GOTO 90
END | F ' ( nRowiVax%=0)

PRI NT #14, USING "The abs(max) = H#iHH#. #H#H##" . Val Max#;

PRI NT #14, USING " at n=##, nr##"; nRowivbax% nCol Max%

Det Product # = Det Product# * Val Max#

i Rank% = Next RowNon®o

PRI NT #14, USI NG "Det. Product =########H###H. HH##H#HH" . Det Pr oduct #

Next Row%% = nCol Max% "This is the row to be used.
nUsed% nRowvax% = - nUsed% nRowivax%
mMJsed%{ nCol Max% = - mJsed% nCol Max%
nVar sUsed = Next RowNon?tb
nPi vot % = mJsed% nCol Max% '<- Overwitten row.
nPi vot % = nUsed% nRowivax %) '<- Overwritten col um.
| F (Vval Max# <> 1#) THEN
PRI NT #14, USING "Divide row ## by ########. ####: ", nRowMax% Val Max#
FOR mo = 1 TO nmCol %
AY#(nRowivax% nPH = AY#(nRowMax% n?9 / Val Max#

NEXT ne

CALL PrintowAY(nUnk% nCol % AY#(), nUsed%), nUsed%))
ELSE

PRI NT #14, "No division needed - step skipped.”

PRI NT #14, ""

END | F ' (Val Max#<>1#)

| F (nRowvax% <> nPi vot %9 THEN
PRI NT #14, USING "Swap row ## w th row ##:"; nRowivax% nPi vot %
FOR nm% = 1 TO nCol %
Al# = AY#(nRowvax% ng
AY#(nRowMax% nPd = AY#(nPivot% ntg
AY#(nPivot% nPy = Al#
NEXT nPb
n% = nUsed% nRowiVax %)
nUsed% nRowvax%) = nUsed% nPi vot %
nUsed% nPi vot% = n%
REM PRI NT #14, "nUsed% ", nUsed% 1), nUsed%2), nUsed% 3)
CALL Print owAY(nUnk% ntCol % AY#(), nUsed%), mUsed%))
ELSE
PRI NT #14, "No row swapping needed - step skipped."”
END | F ' ( nRowivax¥%<>nPi vot %
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I F (nCol Max% <> nPi vot % THEN

PRI NT #14, USING "Swap colum ## wth columm ##:"; nCol Max% nPi vot %

FOR n% = 1 TO nUnk%

SwapCol um#(n% = AY#(n% ntCol Max%
AY#(n% nCol Max% = AY#(n% nPivot%
AY#(n% nPivot?% = SwapCol um#(n%
NEXT n%
n = mUsed% mCol Max%
mMJsed%{ nCol Max% = nlJsed% nmPi vot %
mMJsed%{ mPi vot %) =

REM PRI NT #14, "msed%", nlsed%{ 1), msed% 2), mUsed% 3)

CALL PrintowAY(nUnk% nCol % AY#(), nUsed%), nlUsed%))
END | F ' ( nCol Max%<>nPi vot %

REM el i m nate the projected conponents fromall the other equations:
PRI NT #14, ""
PRI NT #14, USING "Subtract iPivot row ## fromthe other rows"; nPivot%
PRI NT #14, " using a nultiplier:"
FOR nm = 1 TO nCol %
SwapRow#(nt9 = AY#(nPivot% ntd
NEXT nb
FOR n% = 1 TO nUnk% "Clear the space for the overwite:
SwapCol um#(n% = AY#(n% nPivot%
NEXT n%
FOR n% = 1 TO nUnk%
I F (n% <> nPivot% THEN
PRI NT #14, USI NG "Reduce row ## "; n%
PRI NT #14, USING " using nultiplier #####. ####. "; SwapCol um#(n%
FOR mo =1 TO nCol %
AY#(n% nPH = AY#(n% nP9 - SwapCol um#(n% * SwapRow#( g
NEXT ntb
CALL Print owAY(nUnk% ntCol % AY#(), nUsed%), mUsed%))
END | F ' (n%>nPi vot %
NEXT n%
PRI NT #14, USING "and OverWite the inverse in colum ## "; nPivot%
FOR n% = 1 TO nUnk%
AY#(n% nPivot9% = AY#(n% nPivot% - SwapCol um#(n% / Val Max#

NEXT n%
AY#(nPivot% nPivot% = 1# / Val Max#
PRI NT #14, " [A:Y] becones:"

CALL PrintowAY(nUnk% nCol % AY#(), nUsed%), nUsed%))
NEXT Next RowNon®o

90 PRI NT #14, "*** Solver's results: ***"
PRI NT #14, USI NG "Det ernm nant =############E. ######" ; Det Product #
PRI NT #14, USING " Rank =##########4##" , | Rank%
CALL Print owAY(nUnk% ntCol % AY#(), nUsed%), mUsed%))

PRI NT #14, "OverWiter Check: [AI]*[A =[I] 2"
DI M AAI #(nUnk% nUnk2%
FOR n% = 1 TO nUnk% "[ Al Al = [ A] *[ Ast 0]
FOR nP6 = 1 TO nUnk%
FOR nnto = 1 TO nUnk%
AAI #(n% nmPh) = AAI#(n% Py + AY#(n% nnPg * Asto#(nnPy nP)
NEXT nnPo
NEXT nb
NEXT n%
CALL Print owAY(nUnk% nUnk2% AAi #(), nUsed%), mJsed%))
ERASE AAi #
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PRI NT #14, ""
PRI NT #14, "OverWiter Check: [Al*[AI] = [I] ?"
DI M Ai A#(nUnk% nUnk2%
FOR n% = 1 TO nUnk% "[AAI ] = [Asto] *[ A
FOR nfo= 1 TO nUnk%
FOR nnto= 1 TO nUnk%
A AH(NY% nPh = AL A#(n% nmh + Asto#(n% nnPh * AY#(nndy nip
NEXT nnb
NEXT nb
NEXT n%

CALL PrintowAY(nUnk% nUnk2% Ai A#(), nUsed% ), mJsed%))
ERASE Ai A#

ERASE nUsed%
ERASE mUsed%
ERASE SwapCol um#
ERASE SwapRow#

ERASE Ast o#

PRI NT #14, "--- Exiting Subroutine OverWiter(): ---"

PRI NT #14, ""
END SUB ' OverWiter()
Y e R e
SUB PrintAY (nRows% nCol s% AYsee#())

PRI NT #14, " "

FOR n% = 1 TO nRows%

IF (n% <= nmCol s% THEN PRI NT #14, USI NG " ###### " on%
NEXT n%
PRI NT #14, " "

FOR n% =1 TO nRows%
PRI NT #14, USI NG "###"; n%
FOR mo= 1 TO nCol s%

PRI NT #14, USI NG " ######. ######"; AYsee#(n% nd) ;

NEXT ntbo
PRI NT #14, ""

NEXT n%

PRI NT #14, ""

END SUB ' Pri nt AY()

Y e e
SUB PrintowAY (nRows% ntCol s% AYsee#(), nUsed%), nlsed%))
PRI NT #14, " "
FOR nm% = 1 TO nRows%
IF (b <= mCol s% THEN PRI NT #14, USI NG " ###### "y mJsed% nPA ;
NEXT ntb
PRI NT #14, " "
FOR n% = 1 TO nRows%
PRI NT #14, USING "###"; nUsed% n% ;
FOR mo = 1 TO nCol s%
PRI NT #14, USI NG " ######. ######";, AYsee#(n% nPg;
NEXT ntb
PRI NT #14, ""
NEXT n%
PRI NT #14, ""
END SUB ' Pri nt owAY()

End of Appendix B: Matrix Solver Details
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Appendix C: Hat.exe- Use
Limited to A M atrix-based Polynomial Solver for now.

http://ftp.setterholm.com/Pseudolnverse/AppendixC includes:
08/ 29/ 2011 11: 42 AM 586, 240 HAT. exe - the program

08/ 29/ 2011 11:03 AM 5,823 Hatln.csv - the input.

Look at ‘HatIn.csv’ in an ASCII text editor to get a sense of how input datasets are organized.
Hat.exe reads only your first (top) dataset in Hatln.csv.

08/ 29/ 2011 11:42 AM 30,007 Hat Report.txt — the detail ed output.
‘HatReport.txt’ provides a good example of what ‘Hat.exe' can do in the blink of an eye.

08/ 29/ 2011 11:42 AM 1, 989 Hat Qut. csv - reorders input data
Look at ‘HatOut.csv' in a spreadsheet program.
08/ 29/ 2011 09: 49 AM 225 _Run-Hat . bat

For use by DOS-literate people. Launches the program
& follows up by displaying Hat Report.txt in the screen w ndow.

The opening disclaimers of “HAT .exe” version 0.40 — is an unpleasant read:

HAT. exe is an experinmental piece of scientific software.
> A sanple Hatln.csv file was available with this software.
with several datasets therein.

> Presently, ONLY POLYNOM AL- BASED SOLVI NG | S ACCESSI BLE.
"Hat Report.txt™ has the useful results.
"HatQut.csv' is for-now only useful for re-ordering data.

Use "MJse.exe for non-poly problens (See Appendi x B).

HAT reads only the first (topnost) dataset.

> The manner in which the software m ght respond to errors
in your "Hatln.csv input file is unknown.

> The program was created on an AMD Athl on 64 processor in
a Wndows XP environnment using Absoft s ProFortran 9.0.
Whet her or not this programw |l run properly on your
particul ar conputer is unknown to ne.

> Al t hough not intentional on ny part, there may be errors
in the conputational results.

> TH S PROGRAM | S POSTED ON THE W\EB
W THOUT GUARANTEES OR WARRANTI ES OF ANY KI ND,
i ncluding, but not limted to,
fitness for any particul ar purpose.

> | f YOU ACCEPT ALL THE RI SK(S) of running the program
type A to accept the risk(s) and conti nue.
Ot herwi se, type Qto quit.

End of Appendix C: Hat.exe- Use
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Appendix P: Philosophy

Entry #1: (Referenced on page 9)
Without a hyper-dimensional way of understanding how “unknowns’ relate to “observations’, it's easy
to be close-to-clueless about how “real world” problems might be solved. Science, Math, and
Engineering education & experience have produced people who, by intense focus in understanding their
disciplines, were/are profoundly capable problem solvers. If the world’ s social problems are going to be
solved peacefully, then humanity needs people who are intensely focused problem solvers within the
various social disciplines...“Y our mission — should you choose to accept it — .
Trusting the invisible mental gears of “the next politician” will not take the world to social harmony.
We need transpar ent gover nance decision models. Living under a tyrant, 10 years can seem like an
eternity — if you're lucky enough to survive. Solve problems now, while you have a chance, or pay for
not solving them later. Allowing me some poetic license: “There are only two kinds of people:
Engineers & Victims.” HAT lies at the beginning of a path to learning how to create transparent
governance decision models which may benefit amost everyone.

Somebody — anybody — anywhere in the world - please go for it!

Entry #2. (Referenced on page 24)

On the social side, | consider it likely that pseudoinverse system analysis will be part of the
analytical mix that creates transparent governance models helping in innumerable ways,
including:

1. By the comparatively simple and robust access that it offers for exploring parameter
identificationsin high-dimensional non-linear problem spaces.

2. By de-mystifying the very idea of being able to find accurate answers in hyperspaces. Citizens
the world over may begin to expect, if not demand, that presently-funded experts begin to provide stable,
long-term solutions to the governance problems that are theirs to solve particularly solutions to the
socia problems that have plagued humanity for hundreds of years. Trusting the invisible mental gears
of “the next politician” has not and never will take the world to enduring social harmony. Let'stry
to create transparent gover nance decision models. Maybe the models won't work either, but an old
Army manual characterized plans in athoughtful way:

“A bad plan is better than no plan.”

3. By recognizing that every family in America is a “special interest group” which should have an
equal amount of weight in the search for balanced congressional “answers”. “The average
American family” is falling apart before our very eyes, do the maority of our mentally-unaided
politicians even dare to care? For the time being: greed rules at the national level, eh?

The idea of “a transparent ethical compass’ that works in hyperspace has alure.

4. The corruption of human minds by wealth & power is acommonly recognized pitfall;
trusting “invisible mental gears’ as “leadership mechanisms’ = a bad plan. “Evolving
transparent mitigations of human pitfalls’ isagrand vision.
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5. Anintegral part of achieving transparent governanceinvolvesarriving at a shared
compr ehension of the rulesthat constrain and empower us—i.e. our Laws. Bright and
ambitious young Americans have been drawn to the rules like a professional magnet for
scores of years, but a significant fraction of lawyers resemble loose cannons rolling
around the deck of a ship, contributing — in a major way — to financial uncertainties and
financial losses for the rest of society. There's no good reason why “a nation’s rules’
should be the foundation of widespread parasitic professional conduct.

6. More dimensions are involved in the tradeoffs of governance decisions than any one
mind can intuitively harmonize. Hyperspace meth, in various forms, will aid our shared

discernment. This document is a piece of the puzzle. As one example of other various
forms of high-dimensional mathematics. Linear Programming is a mathematica tool
used to efficiently allocate manufacturing resources within an enterprise.(See Wikipedia.)

7. Both doquent and “invisible” intentions led to the American Civil War in 1861; the
speeches and writings of Thomas Jefferson, America's third President, come to mind.
Jefferson was the philosophical guiding light of the Confederacy during the war, but,
none-the-less, the Jefferson Memoria in Washington D.C. stands as a national monument
to his eloguence and influence. Even after giving our third President the benefit of the
doubt - that he meant well - if there need be proof that “great speeches’, and/or
“great politicians’ are a suspect means of assuring social harmony, Thomas
Jeffer son’s example provides the proof. Adolf Hitler also delivered “great speeches’ in
his day, but events subsequently revealed Hitler's “invisible’ intentions, which
harmed/killed millions of people.

8. Y ears ago someone concluded that: ‘ The purpose of companiesisto utilize people's
strengths and make their weaknessesirrelevant.’

Here' s a candidate statement of purpose

“The purpose of transparent governance is to provide a shared & predictable
political framework within which individuals and organizations can plan for_the
future, and to instruct our political leadersin how our society presently functions.”

It remains to be seen whether or not transparent governance can be achieved.
Deciding clearly: “What is us.” and “What is not us.” will be difficult.

In systems with many dimensions, gems are the neighbors of noise.
It's no wonder that “invisible mental gears’ are so challenged by redlity.

End of Appendix P: Philosophy

Hyperspace Algebra Tools version 0.50 Page 50 of 54 September 14", 2011



References & Acknowledgements

“A First Coursein Linear Algebra’ by Daniel Zelinsky, Academic Press, 1973.
Thisis an ideal textbook for people who prefer to learn math using intuition and examples.

TheFlight Simulation Engineersat McDonnell Douglas, St. L ouis (1976-1978).
Within the simulation group, extremely efficient codes for solving problems 20 times a second were the-
order-of-the-day; everyone helped everyone else become more skilled at efficient problem solving.
Within that talented group of people, there seemed to be no lower limit on how compact source codes
could become, and there seemed to be no lower limit on how quickly a given problem could be solved...
when given further thought.

Honeywell’s Systems & Research (S& RC), Minneapolis (1978-1984).

(at Ridgway Parkway)
Honeywell had a building full of multi-disciplinary experts who were as collegial as the flight
simulation engineers at McDonnell Douglas. Within S&RC, Dr. Gunter Stein taught me that:

[A]"=([A]'* [A] )+ [A]T
| knew, the instant that Gunter wrote down the equation, that my professional life had just experienced a

major empowerment. (I had seen pseudoinverse being used in a very simple control system solution at
McDonnell Douglas, but hadn’t begun to grasp the scope of the subject.)

Absoft Corporation’s ProFortran 9.0 & William Mitchell’s FO0GL .

For the last seven years I’ ve programmed using Absoft’s version 9.0 Fortran compiler and the OpenGL
(graphics) interface to Fortran provided by Dr.William Mitchell of NIST. The stability of the
programming environment and the power of the graphics are a marvel. Bravo.

~Apologies:

1. | haven't been trained as a teacher, so knowing “how to teach” isn't my specialty. | suggest,
however, that teaching can be parsed into two subsets “How to Teach” and “What to Teach”.
Consider this paper an exposition on “What to Teach” to empower bright 3" graders to progress into
hyperspace analytics. | invite anyone to figure out “how to teach” the material; | would enjoy the
opportunity to help with the task. (The source codes and examples in Appendices A and B revea the
mechanics of the computations described on pages one through nine of this document.)

2. Pseudoinverse System Analysis isn’t part of HAT because I’'m not aware of how to exercise an
(your) externally-defined system simulation model — efficiently - from within “HAT.exe”

3. Almost no visualizations are included in this paper, despite having created quite a few (each of
which made little intuitive sense to me). In general, many real problems naturally lend themselves to
visudlizations - demonstration of results in a visual context. Visualizations easily access intuition,
whereas numbers aone are, at best, more narrowly intuitive. Strive to have a personal programming
environment that allows you to code your own powerful algorithms and to create your own first-
rate 3D (stereo) dynamic graphic visualizations. Visualy-based analytical exploration is a hoot!
“Homogeneous Transforms’ (4x4 matrices with special properties) are the key to understanding the math of
perspective & 3D visuadization, because you can then efficiently do projection; This is yet another example of
brilliant results produced by scientists whose names may be unfamiliar to you. Expanding homogeneous
transforms into hyperspace is likely to be fruitful; e.g.: with some thought, 4-D spaces can probably be projected
a will onto 3-D subspaces for stereo viewing.
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in the meantime, a my own expense... simplifying technical understandings to their
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WWW.USPtO.goV - advanced search: IN/Setterholm- Jeffrey-M

My contact information:
Jeffrey M. Setterholm
8095 230" <. E.
L akeville, Minnesota 55044-8287
USA
This document has a wealth of insights about “what to teach”
to mathematically empower analytically-inclined young people.

“How to teach” theseinsights isnow the greater challenge.
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