
January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 1 of 16 Free Setterholm

Min-Steps
a Game Theory Algorithm

Author: Jeff Setterholm Lakeville MN, USA
January 28, 2025

The link to this paper: https://ftp.setterholm.com/WorldPeace/Math/Rubik/Min-Steps.pdf

This is a starting point for: “WisdomCAD”
... beneficial, extremely efficient decision making

 “wisdom”: “Achieving harmonious results with no wasted effort
 and minimum mayhem.” - here , 2025

 “guile” : “Deceitful cunning; craft and treachery.” - Webster , 1956

Wisdom may begin to compete with guile,
which has been a daunting task for unaided human minds.

Introduction:

In 2025, Computer Aided Design (CAD) software systems of many types are an integral part of
design work. As a simple example: hobbyists routinely “print” three-dimensional shapes of CAD
mechanical models directly from virtual views on their personal PC screens. Within a specialty,
CAD systems archive, analyze, coach, communicate, display, harmonize, standardize & track
multiple aspects of a design.

The CAD paradigm for understanding specialties is far more powerful than any particular CAD
implementation, faintly resembling how ‘the matrix inversion paradigm’ permeates computational
applied mathematics in a vast variety of forms, regardless of the implementation details.

For at least hundreds of years “Wisdom” has been an almost-meaningless buzz word. This is a
consequence of poorly conceived, self-serving & subjective “peer review” within academia. Hence
everyone learns early-on that “Utopians are fools” …rather than peacefully-motivated optimists.

When CAD is unleashed on the “wisdom problem” dramatic advances will occur. ‘Min-Steps’, this
paper, introduces a starting point for CAD system programmers to focus their rich, vibrant,
analytical tradition on cooperative, extremely efficient human decision making. Being wise outside
of academia will evolve from a “denied-by-snoots dream” down to an obvious, pleasant hobby
option.

Demonstrating the Min-Steps algorithm:

A Rubik’s Cube (`RC`) is solved when all the cells are properly oriented at the location where
they belong. A 2x2x2 RC is now solved in the fewest number of moves (14 90 face rotations, or
less) for all 3,6674,159 valid cube scrambles.

Solving the 2x2x2 cube and attempting to solve the 3x3x3 cube shape what follows.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 2 of 16 Free Setterholm

Generic Variables: & as used here in Rubik’s Cube solving:
Clear, concise definitions of key, short-named variables simplify computer codes & save brain-
space.
Generic: Rubik’s Cube specific: 2x2x2 3x3x3
A Attitude(s) specific cell dispositions 21* of 24 each 24 each =”self-assessments”
C Choice(s) specific face rotation option(s) 6 12 -without 180’s
 - including 180’ rotations 9 18
D Discord(s) number of moves from solved 14 at most unknown -without 180’s
E Emulator model of physical cube behavior 2x2x2 3x3x3
L Lookup table the Discords of all scrambles solved not solved here
M Move(s) a face rotation(s) Choice
R Result(s) cube scramble(s) total: 3,674,160 86.5033e18? 86 quadrillion, maybe
S Sequence(s) set(s) of specific Moves' Choices
V Voter(s) any movable cube cell(s) 7* of 8 20 of 20 = “important entities”
W Workout finding all novel Results in a Zone
Z Zone(s) Voter/Attitude sub-groups
 with known Results Discords *:the 2x2x2 has no reference axis,
 - subset(s) of wisdom so one cell with three possible
 attitudes can remain fixed.
__
Variable prefix & suffixes:
Prefix:
a_ "Address of” every valid Result R has a unique addresses L(aR)
~ “approximately” a subjective assertion, & my favorite symbol
Suffixes:
_i “index of” = [1,2,3,...,] Moves, Choices, Sequences, Voters, Attitudes & Results
_max max number
_n novel a previously unseen Result Rn
_p the puzzle a given scramble Rp
_s solved the solved cube Rs
_tot total number e.g.: M = [1,2,3,...,Mtot]
_' "prime" = a Result changed by a Move Choice
-> import/export face rotations change scrambles (R & Ci) -> E -> R'
__
A Synopsis:
The Min-Step algorithm is a ~simple generic Workout that populates a Lookup table of Discord
values within a Zone by generating Sequences for the Emulator and keeping track of Results
novelty & hence Sequence novelty. Thus Min-Steps is able to pass a greatly-shortened stream of
potentially-novel Sequences to the Emulator, and does so until no novel Results are returned.

The tricky part is realizing a Zone, which includes programming the Emulator with its input
Sequence processing, exercising Move Choices yielding Voters Attitudes, and exporting of Results.
The addresses of the Lookup table (e.g.: see page 8) are Zone-specific Voter Attitudes. When the
Emulator no longer returns novel Results the Lookup table is complete. The RC Emulator is
programmed herein a couple of different ways, both in a few lines of Fortran source code.
Addresses are the indices of the Lookup table array; the “Indexer” that generates the Result
address aR is much more complicated code, but has generic aspects.

Discords do not “count the votes”, but rather reveal the downhill ‘topology’ (a multi-dimensional
surface or surfaces) of the purely-cooperative Move Choices within a Zone. Zone/Discord use is
wise planning’s finest hour: with appropriate software ~effortlessly solve a Zone’s puzzle in the
absolute minimum number of moves. Beyond that, algorithms which achieve harmony across
multiple Zones (mine don’t, yet) will begin to automate “common sense”. At best, elections are
relatively blunt instruments for realizing constructive social change.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 3 of 16 Free Setterholm

__
Overview:

As a veteran technical problem solver: I have gambled 21 months of my time that solving Rubik’s
Cubes in the fewest number of moves would enlighten my quest to figure out World Peace. And it
has! But trying to solve scrambled cubes, per se, was a dead end. Likewise…

Figuring out World Peace is a seemingly overwhelming challenge. However, in conversations with
other people, their expressible ideas suddenly abounded after the problem was rephrased:
 “How could a perfect world be screwed into our present mess?”

Here, the entire downhill-to-solution topology of the 2x2x2 Rubik’s Cube minimum-steps Move
Choices is made accessible and becomes navigable after finding and cataloging all the cube
scrambles by how-far-away-from-solved they are… by reverse engineering out to every last
scramble from “solved”. Know that your Emulators will be inside the ballpark when they can
reverse engineer out to the existent screwed up Results of the problems that puzzle you.

A computer model of the Rubik’s Cube, the Emulator E, has a central role. All the possible Cube
face rotation Choices C are modeled to alter the location & rotation of each cell of the rotated
face. It turns out that 24 cell Attitude values – A’s – also uniquely specify the cell locations.

Each cell is generically a Voter V with a known A value - its Vote. The Attitudes of all the Voters-
of-interest is a Result R. RC Voters are divided into Zone(s) Z subset groups because considering
them all at once for a 3x3x3 was too big a problem. The 8 corner cells of a 2x2x2 are a solved
Zone that is fully functional.

E processes Sequences S of face rotation Move M Choices C, deconstructing the solved Result Rs
to new scrambled Result R’. The Move count is called the Discord D of the Result when it is the
smallest number of Moves that reach the Result.

Each R’ has a unique address in a Lookup table L, and the Lookup table stores “how far from
solved”, i.e.: the Disord D, of each novel scramble Rn. L(aRn) = D. Initially the entire table is set
to value L(1:Rtot) = -1. Because the Sequences are presented from the shortest (D=0) to the
longest (Dmax=14, for the 6-Choice 2x2x2): if(L(aR’)=-1) then R’ is novel & L(aR’) is set = D.
Thus the Lookup table is populated with all the fewest Move D values and becomes ready for use.

The Lookup table is used by the Emulator to reveal the entire 2x2x2 downhill-to-solution
topology. Any cube scramble is a puzzle Rp. All the Move choices are tested: each C yields (Rp &
C) → E → R’ and L(aR’) = D is the disorder. Rp has at least one C that will reduce D by one at the
next R’, except for Rs at D=0, which can only move to a new R’ with a D=1. And L(aRp)=D is the
minimum number of 90 Moves that will be needed to solve Rp.

Hence, in the case of 2x2x2 Rubik’s Cubes, knowing the Disorder of scrambles provides sufficient
information to solve them in the fewest moves, without having to store a specific solution
Sequence for each scramble. I.e.: Discords form a topology that transcends Move recipes.

For the RC solving problem, wisdom has very limited scope, with further division into Zones Z.
Here, for an RC, solving/harmonizing seven corner cells (#1,#2,#3,#4,#5,#6,#7) of a 2x2x2 RC
is Zone#2 (cell #8 is held fixed). For a 3x3x3, solving the four front-right-lower quad of cells
(#8,#16,#19,#20) is Zone#1, and solving the nine non-quad edge cells
(#9,#10,#11,#12,#13,#14,#15,#17,#18) is Zone#3. After solving Zone#1 then either Zone#2
corners or Zone#3 edges do solve in a minimum number of steps, but, for deep scrambles, not
both at the same time. Perhaps there are bugs in my assumptions or my code. Nonetheless,
Zone#2 alone does solve 2x2x2’s.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 4 of 16 Free Setterholm

Grouping Variables Generically: This rephrases the overview.
A Sequence has Moves consisting of Choices
 Si M [1,2,3,,,,Mtot] C [C1,C2,C3,...CMtot]
Sequences are generated from the fewest Moves to the most moves

Results are a snapshot of the Voters` Attitudes.
 Ri V [1,2,3,…,Vtot] VA [A1,A2,A3,...AVtot]

A Result and a Choice in The Emulator yield a new Result
 (R & C) -> E -> R’
Some Voters’ Attitudes are always modified in the Emulator by any Move Choice.

Use the Emulator repeatedly to produce a Sequence’s deconstructed Result.
 (Rs & Si) -> E -> Ri

If Ri is novel Rn, i.e.: not seen before,
 then the Disorder is the number of Moves of Si

Each Result has a unique Address in a Lookup table L
Initially all L values = -1
A Result is novel if the Lookup table address is negative.
 If L(a(Ri))<0 then set L(a(Ri) =D

Starting with no Moves i.e. Rs & D=0, exercise all of the Choices of the first move, and record the
novel results for D=1, which will be all of them.

Repeat this process for the second move: test all the D=1 novel sequences using all the Choices,
again saving the D values of the novel Results in the Lookup table. Not all the Results are novel,
e.g.: reversing the D=1 move choice at D=2 returns the Result to solved.

Repeat this process for D = D+1. Eventually there will be no more Novel Results and the Lookup
table is fully populated.

Generating & evaluating all the Sequences as described above is a Workout W.

In order to then use the Lookup table & Emulator as a real world puzzle solver, the Rp “problem”
- a physically scrambled cube - needs to be imported into the software environment; tedious
means to do that for a 2x2x2 are provided. Link #0L145 “ScrambleID-2x2x2.pdf”.

Unusual aspects:
1. The i’s involved: Si, Ri, aRi, etc. can be huge.
2. Define Emulator variables as early as possible & as succinctly as possible.
3. Coding a robust Emulator was challenging; fast solutions save lots of time; therein
 concatenation (joining two functions so that their interface vanishes) is a gem;
4. Generating Sequences and Results using an existing Emulator is easy.
5. Computing the unique Lookup table addresses of Results can be difficult
 because the maximum address size can be too large for available computer memory.
6. Only using novel Results allows the Emulator to terminate a Workout sooner than expected.
7. Workout runtime and maximum address size are somewhat related.
8. For huge datasets, direct addressing Results via an Indexer is much faster than searching
 a sort-based list.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 5 of 16 Free Setterholm

Reference .pdf files: This page is approximate, & the .zip files lag actual posts.
These seven .pdf files all have line numbers which are frequently referenced.
01/24/2025 06:12 AM 676,075 MS0-Dir-Doc-txt.pdf #0
01/23/2025 06:17 PM 1,115,817 MS1-Launch-f95.pdf #1
01/23/2025 06:18 PM 1,690,381 MS2-RC-NamesEtc-f95.pdf #2
01/23/2025 06:19 PM 3,655,079 MS3-RC-Workout-f95.pdf #3
01/23/2025 06:19 PM 1,296,571 MS4-RC-Emulator-f95.pdf #4
01/23/2025 06:19 PM 1,184,881 MS5-RC-ConCat-f95.pdf #5
01/23/2025 06:20 PM 2,652,759 MS6-RC-Solve-f95.pdf #6

***** Be able to easily access this key reference .pdf: *****
01/24/2025 06:12 AM 676,075 MS0-Dir-Doc-txt.pdf #0
 Therein the line of code above is: #0L22

Fortran 95 .pdf’s: created using “Absoft Pro Fortran 2022” compiler:
The Fortran source codes also include syntax color-codes. (Red text: comments)

01/23/2025 06:17 PM 1,115,817 MS1-Launch-f95.pdf #1
 Module MS1Def #1L17+ -basic program variables
 Program MS1Launch #1L63+ -opens cOutFile
 -calls ReadYourNml()
 -transfers control to ImportEin()
 Subroutine SaveOutFile #1L147+ -closes/opens cOutFile
 Subroutine Jdate22() #1L162+ -World dates & times
 Subroutine nRunSec() #1L195+ -big, precise interval timers
 Subroutine MyLenTrim() #1L295+ -truncates strings
 Subroutine Beamer() #1L280+ -progress bar
 ^^^^ : these are .pdf line numbers

01/23/2025 06:18 PM 1,690,381 MS2-RC-NamesEtc-f95.pdf #2
 Module MS2RCDef #2L14+ -Min-Steps & RC variables

01/23/2025 06:19 PM 3,655,079 MS3-RC-Workout-f95.pdf #3
 Subroutine MinStepSolver() #3L21+ -Min-Steps Lookup tables generator
 ...opens & writes many files
 Subroutine BitLog() #3L548+ -Results Novelty tracker
 Subroutine ReadYourNml() #3L639+ -called by MS1Launch at the outset.
 -opens 'MS4.ini' & EnvNml
 Subroutine ImportEin() #3L713+ -internalizes .nml data
 -branches to apps via %iType
 Subroutine PrintErec() #3L774+ -view Emulator setup records
 the core of Zone(s) setup/use
 and runtine inputs
 Subroutine PrintSRrec() #3L871+ -view Sequence/Result records
 the core of Lookup table gen.

01/23/2025 06:19 PM 1,296,571 MS4-RC-Emulator-f95.pdf #4
 Subroutine EmulatorRC() #4L12+ -cell-move-based Emulator
 -uses Data- Emulator.txt
 Recursive Function Indexer()#4L116+ -uses Data-Indexer.txt

01/23/2025 06:19 PM 1,184,881 MS5-RC-ConCat-f95.pdf #5
 Subroutine Concatenate() #5L14+ -uses Data-nLAV.txt
 -uses Data-AttConcat.txt
 Subroutine AllMoves() #5L106+ -concatenation-based Emulator
 Subroutine ComputeOrder() #5L260+ -order(s) of Zone subsets

01/23/2025 06:20 PM 2,652,759 MS6-RC-Solve-f95.pdf #6
 Subroutine GenScramble() #6L15+ -uses Data-Emulator.txt
 Subroutine SolveScramble() #6L98+ -exercises Zones, solves 2x2x2's
 -uses Data-Emulator.txt
 Subroutine AtoD() #6L422+ -“Attitudes-to-Discords”, i.e.:wisdom
 -uses the Discord.bim files
 6 File(s) 11,595,488 bytes

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 6 of 16 Free Setterholm

Voter(s) V: Link: #0L49 “Data-Locations.txt” in .zip

The Voters V are the Rubik’s Cube cells.

They are numbered by their “solved” locations:
 normally usually
Cube: “vote”: don’t vote:
2x2x2 1: 7 8 no inherent frame of reference. Hence 8 can be fixed.
3X3x3 1:20 21:26 on-axis cells do rotate.
 27 an imaginary cell at the center of the cube.

 +X
 /
 /
 (+1,-1,-1)= 2-----11------4 =(+1,+1,-1)
 / /| . /|
 9-----*21----12 |
 /| | /| | . /| |
(-1,-1,-1)= 1-----10------3 | |
 | | | | | |. | | |
 | |14--|-|*24-|-|-16
 | |/| | |/| | |/|
 |*22---|*27---|*25+Y-> Move Choices(7,8,G)
 |/| | |/| | |/| | Indices: 1-thru- 8 are 2x2x2 corners
 13-----*23-----15| | : 9-thru-20 are 3x3x3 edges
 | | | | | | | | | : 21-thru-26 are 3x3x3 face centers
 | | 6--|-|19--|-|-8 =(+1,+1,+1) --------------------
 | |/ | |/ | |/ : 27 accumulates rotations
 |17----|*26---|-20 : 0 pure Euler rotations
 |/ |/. |/ (face independent)
(-1,-1,+1)= 5-----18------7 =(-1,+1,+1)
 | Solving a 2x2x2 is nearly as difficult as
 | solving just the corner cells of a 3x3x3.
 +Z Move Choices(B,C,I)

The variable “nL” [1:27] is used herein to describe the locations above;
don’t confuse nL & L, which is the Lookup table variable.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 7 of 16 Free Setterholm

Attitude(s) A: Link: #0L48 “Data-Attitudes.txt” in .zip

Each cell of a Rubik’s Cube has 24 reachable Attitudes designated by the
lowercase letters “a” through “x”:

 # Letter Roll Pitch Yaw
 1 a 0 0 0
 2 b -90 0 0
 3 c +90 0 0
 4 d 0 -90 0
 5 e 0 +90 0
 6 f 0 0 -90
 7 g 0 0 +90
 8 h 180 0 0
 9 i * 0 +180 0
 10 j 0 0 180
 11 k -90 0 -90
 12 l -90 0 +90
 13 m 0 -90 -90
 14 n 0 -90 +90
 15 o 0 +90 -90
 16 p 0 +90 +90
 17 q +90 0 -90
 18 r +90 0 +90
 19 s -90 0 180
 20 t 0 -90 180
 21 u 0 +90 180
 22 v +90 0 180
 23 w 180 0 -90
 24 x 180 0 +90

 Image: Attitudes-3D.jpg
 Use red|cyan glasses

 *: Pitch=180.
 is non-standard but descriptive,
 & i groups with 180 rotations h & j
 & follows 1-moves b through g
 & precedes 2-moves k through r
 & 3-moves s through x.

 As a standard aircraft attitude:
 Roll Pitch Yaw
 9 i * 180 0 180
 which would be a Rubik 4-move.

I’ll introduce you to a big-data result on the next page: the Discords of all possible
2x2x2 Rubik’s Cube [a:x] scrambles:

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 8 of 16 Free Setterholm

A Big-Data Result & Challenge #1:
 Link: #0L77 “R2C-1234567-6-RrAscii.txt” in .zip

There are 3,674,160 valid scrambles of a 2x2x2 RC, including solved. The link
(#0L63) lists them all; the first 10 and last 10 scrambles are shown here. Only a
third of the 11,022,480 addresses are populated with valid scrambles & included in
the file.

R2C-1234567-6-RrAscii.txt
 2 7 1 2 3 4 5 6 7 RubSize, Vtot, V(1:Vtot)
 11022480 3674160 14 Rtot,Stot,Mtot
 1 aaaaaaa 1 0
 4 aaaaajj 3650493 13 1 1 A 1 5 9 5 5 9 6 A 1 6
 8 aaaaakp 2815133 12 1 1 5 1 6 9 2 A 5 A 5 9
 11 aaaaalo 3669095 13 1 5 9 6 1 9 2 A 1 9 5 A 1
 15 aaaaamr 3655474 13 1 5 1 1 5 1 5 5 2 5 9 1 A
 18 aaaaanq 2822174 12 1 1 5 1 A 1 6 A 5 2 5 9
 19 aaaabac 3664953 13 1 5 2 9 9 1 9 5 5 9 5 A 5
 23 aaaabdo 109611 8 5 A 2 9 6 A 1 9
 27 aaaabfr 51338 8 1 5 1 9 2 A 2 6
 29 aaaabkg 3628805 13 1 1 6 2 9 1 9 6 A 2 5 A 6

 ~~ ~~~~~~~ ~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

 11022453 xxxuwqw 3315918 12 1 6 1 6 2 5 2 A 5 5 1 A
 11022456 xxxuwun 1908821 11 1 6 A 5 9 9 5 1 6 9 5
 11022457 xxxuwvh 462646 9 9 6 1 9 6 1 A 6 1
 11022461 xxxuwxl 1783328 11 1 5 A 2 6 9 1 6 A 5 1
 11022463 xxxuxhb 472238 9 9 9 1 6 9 1 5 5 A
 11022467 xxxuxpd 378294 9 6 1 1 5 1 A 6 1 A
 11022471 xxxuxrw 491336 9 A 1 9 9 2 5 5 2 9
 11022474 xxxuxum 3119325 12 1 5 1 5 A 5 A 5 5 9 1 6
 11022475 xxxuxvi 3016434 12 1 1 9 5 9 6 1 6 1 6 2 6
 11022479 xxxuxxk 3001419 12 1 1 9 2 9 5 1 1 A 6 2 9
 a ^^: Discord(s) [0:14]
 ^^^^^^^^: scramble(s) 7[a:x]
 12345678
 ^^^^^^^^: Lookup table address

Challenge#1:
The 7-Attitude scramble is the votes of all the Voters & the Discord is the distance
from solved.

Find a clear, compact predictive model:
Discord = model(scramble)

…which supercedes this huge Lookup table.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 9 of 16 Free Setterholm

Choice(s) C:

The 18 Move Choices C are cube face rotations(degrees):

cube axis: face#:| Choice#’s: | similar to |
 |decimal[1:18]:|symbolic[1:I]:|Attitude[b:h]:|
Axis Color | -90 +90 180 | -90 +90 180 | -90 +90 180 |
-X (red) #1 | 1 2 13 | 1 2 D | b c h |
+X (orange) #2 * | 3 4 14 | 3 4 E | b c h |
-Y (blue) #3 | 5 6 15 | 5 6 F | d e i |
+Y (green) #4 * | 7 8 16 | 7 8 G | d e i |
-Z (yellow) #5 | 9 10 17 | 9 A H | f g j |
+Z (white) #6 * | 11 12 18 | B C I | f g h |
 ^ ~extended but axis
*:omitting #2,#4,#6 hexadecimal specific
leaves Voters/cells Moves listings
8,16.19.20 | & 24.25,& 26
stationary

 & as concatenations C#
C# Symbol Roll Pitch Yaw Axis: for cells [1:20] inverses
 0 0 0 0 no move “aaaaaaaaaaaaaaaaaaaa” 0 =“solved”
 1 1 -90 0 0 -X "babababaabaababaabaa" 2 = ±90
 2 2 +90 0 0 -X "cacacacaacaacacaacaa" 1
 3 3 -90 0 0 +X "ababababaabaababaaba" 4
 4 4 +90 0 0 +X "acacacacaacaacacaaca“ 3
 5 5 0 -90 0 -Y "ddaaddaadaaaddaadaaa“ 6
 6 6 0 +90 0 -Y "eeaaeeaaeaaaeeaaeaaa“ 5
 7 7 0 -90 0 +Y "aaddaaddaaadaaddaaad“ 8
 8 8 0 +90 0 +Y "aaeeaaeeaaaeaaeeaaae“ 7
 9 9 0 0 -90 -Z "ffffaaaaffffaaaaaaaa“ 10
10 A 0 0 +90 -Z "ggggaaaaggggaaaaaaaa“ 9
11 B 0 0 -90 +Z "aaaaffffaaaaaaaaffff“ 12
12 C 0 0 +90 +Z "aaaaggggaaaaaaaagggg“ 11 ___
13 D 180 0 0 -X "hahahahaahaahahaahaa“ 13 = 180
14 E 180 0 0 +X "ahahahahaahaahahaaha“ 14
15 F 0 +180 0 -Y "iiaaiiaaiaaaiiaaiaaa“ 15
16 G 0 +180 0 +Y "aaiiaaiiaaaiaaiiaaai“ 16
17 H 0 0 180 -Z "jjjjaaaajjjjaaaaaaaa“ 17
18 I 0 0 180 +Z "aaaajjjjaaaaaaaajjjj“ 18
 1 2
 12345678901234567890

A concatenation-based Emulator will be introduced on page 13. Thus scrambles
can be pre-concatenated and post-concatenated by C’s and C-inverses, so
there are a total of 36 move Choices.

2x2x2’s are solved by rotating only the –X,-Y, & -Z faces. Hence there are 9
move choices for both pre- & post-concatenation, and Discords predict the
solution paths wisely in that non-intuitive 18-choice environnment.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 10 of 16 Free Setterholm

Results address a_ Indexer:

The code is in #4L116-367 – Recursive Function Indexer(): computes
 Lookup table addresses recursively .

“Recursion” is when a subroutine or function calls itself. In the example below the
addressing is 20-dimensional, & ‘next-address’ code recurs 20 times; the address
accumulates during de-recursion just before each recursion returns to the
recursion that called it. The full address pops out of the top recursion as a function
result!

The Emulator, processing the Choices & computing Voters’ Attitudes determine how
many Results there will be. Hence addressing Results is problem-dependent.

Here’s the worst-case scenario: For the 3x3x3 RC there are 20 cells(Voters) with
nominally 24 attitudes each. If all the attitudes were reachable by all the cells
then: the total addresses = 24^20 = 4.019988e27 ~4.01 septillion.

Fortunately, each located corner cell removes three attitudes from consideration,
and each located edge cell removes two attitudes from consideration. The Indexer
recursively computes the needed address space size to be: 5.19e20 as follows:

full-in : 20 20 1 1 edges
de-recur : 20 20 2 x 2 * 0 + ^> = ~ single choice 1
de-recur : 19 19 4 8 * 0 + ^> = 1
de-recur : 18 18 6 48 * 0 + ^> = 1
de-recur : 17 17 8 384 * 0 + ^> = 1
de-recur : 16 16 10 3840 * 0 + ^> = 1
de-recur : 15 15 12 46080 * 0 + ^> = 1
de-recur : 14 14 14 645120 * 0 + ^> = 1
de-recur : 13 13 16 10321920 * 0 + ^> = 1
de-recur : 12 12 18 185794560 * 0 + ^> = 1
de-recur : 11 11 20 3715891200 * 0 + ^> = 1
de-recur : 10 10 22 81749606400 * 0 + ^> = 1
de-recur : 9 9 24 1961990553600 * 0 + ^> = 1 corners
de-recur : 8 8 3 x 5885971660800 * 0 + ^> = single choice 1
de-recur : 7 7 6 35315829964800 * 0 + ^> = 1
de-recur : 6 6 9 317842469683200 * 0 + ^> = 1
de-recur : 5 5 12 3814109636198400 * 0 + ^> = 1
de-recur : 4 4 15 57211644542976000 * 0 + ^> = 1
de-recur : 3 3 18 1029809601773568000 * 0 + ^> = 1
de-recur : 2 2 21 21626001637244928000.0 * 0 + ^> = * 1.0
de-recur : 1 1 24 519024039293878272000.0 * 0 + ^> = * 1.0
 \sx\qn\qd\tr\bl\ml\th\hn\ \sx\qn\qd\tr\bl\ml\th\hn\
 ^24^21^18^15^12^9 ^6 ^3 ^0 ^24^21^18^15^12^9 ^6 ^3 ^0

 ^^:effective number of Choices *: 64-bit integers fail,
 ^^:cell# used the mantissas of 128-bit reals.

4.019988e27 / 5.19024e20 -> 7,745,283 times smaller address space is needed,
and probably only 1/6th of these are valid scrambles. However, needing only a 5.19
quintillion byte novelty checker drove me to consider a more compact 3x3x3 3-
Zone solution. Zones #2 & #3 don’t cooperate yet, and the Zone#1 quad solves
oblivious to how bad the scramble will be for the other two Zones.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 11 of 16 Free Setterholm

Zone(s) Z:

Within a Zone the Lookup table of Discord values is useless without the addresser.
Several components must interact. Given Voters with Attitudes Rp, the Emulator
processes Choices creating R’ . Each Zone has its own parameters for using the
Indexer to compute aR’ & hence Lookup the Discord Z(D)= Z(L(aR’)). The
Indexer and Emulator are dual-use, in that they are used to generate the Discord
Lookup table for a single Zone and subsequently exercised to report multi-zone
Discords. The 2x2x2 RC is solved by a single zone - #2. Subroutine AtoD() can
retrieve the Discords of up to nine Zones for a given scramble.

The three zones and run summaries are defined in MS-RC.zip by:

Rubik forward-right-down cells quadrant cells[8,16,19,20]:
 #0L69 R3Q-08161920-12.nml <-sets up the Ein% record
 #0L73 R3Q-08161920-12-Summary.txt <-run summary text file
 & Ein% Zone printout

Rubik non-quad corners cells[1,2,3,4,5,6,7]: [8] is fixed.
 #0L75 R2C-1234567-6.nml This is the only Zone for 2x2x2 solving.
 #0L77 R2C-1234567-6-RrAscii.txt <-the challenge-file on page 8
 #0L79 R2C-1234567-6-Summary.txt
Wherein Min-Steps novelty testing reveals the follow 14-level Discord profile:
nSeq, n1st, nLast, count Level <sec> Run
 0 1 1 1 0.000 0.000
 1 2 7 6 0.015 0.015
 2 8 34 27 0.000 0.015
 3 35 154 120 0.016 0.031
 4 155 688 534 0.047 0.078
 5 689 2944 2256 0.141 0.219
 6 2945 11913 8969 0.515 0.734
 7 11914 44971 33058 1.891 2.625
 8 44972 159120 114149 6.595 9.220
 9 159121 519628 360508 21.453 30.673
 10 519629 1450216 930588 65.354 96.027
 11 1450217 2801068 1350852 156.052 252.079
 12 2801069 3583604 782536 212.598 464.677
 13 3583605 3673884 90280 118.381 583.058
 14 3673885 3674160 276 13.580 596.638
 ^
 15 276 6648.012/sec est.= 0.042
 if real: 11022480 6158.106/sec est.= 1789.914
 ^: 2/3rd’s are not mechanically reachable.

Rubik non-quad edges cells[9,10,11,12,13,14,15,17,18]:
 #0L81 R3E-091011121314151718-6.nml
 #0L85 R3E-091011121314151718-6-Summary.txt
 The summary file(s) also show the first pass of recursions
 of the address Indexer for each Zone.

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 12 of 16 Free Setterholm

Emulator E:

Move Choice Emulator:
This Emulator exploits the fact that cell Attitude also specifies cell location, and
Choices act on cells currently occupying a specific face. Hence a cell/Voter number
and current Attitude combine with a current Choice to predict the resulting Attitude
output which also infers the revised location output. A big three-argument array
stores the details:
AECAV(C,A,V)
 ^:cell/Voter# [1:27]
 ^:Attitude [1:24] =[a:x]
 ^:Choice [0:19] =[1:I+1] =19 is an error handler
 ^:Emulator
^:Attitude-out [1:24] =[a:x]

“AECAV” = Attitude <- Emulator <- Choice + Attitude Voter
 out the array iin in in

Here are the array’s values for Cell#1 (24 lines of numbers) :
 | |Choice [D:I] 180 deg rotations:-X,+X,-Y,+Y,-Z,+Z
 nV|nAin |0 1 2 3 4 5 6 7 8 9 A B C| D E F G H I er
 1 1 1 2 3 1 1 4 5 1 1 6 7 1 1 8 1 9 1 10 1 1
 1 2 2 8 1 2 2 13 16 2 2 2 2 11 12 3 2 22 2 2 19 2
 1 3 3 1 8 3 3 3 3 14 15 17 18 3 3 2 3 3 19 22 3 3
 1 4 4 4 4 12 17 9 1 4 4 13 14 4 4 4 21 5 4 20 4 4
 1 5 5 11 18 5 5 1 9 5 5 5 5 15 16 20 5 4 5 5 21 5
 1 6 6 13 15 6 6 6 6 17 11 10 1 6 6 24 6 6 23 7 6 6
 1 7 7 7 7 16 14 12 18 7 7 1 10 7 7 7 23 24 7 6 7 7
 1 8 8 3 2 8 8 8 8 20 21 8 8 23 24 1 8 8 10 8 9 8
 1 9 9 9 9 19 22 5 4 9 9 9 9 24 23 9 10 1 9 9 8 9
 1 10 10 10 10 22 19 10 10 21 20 7 6 10 10 10 9 10 8 1 10 10
 1 11 11 20 5 11 11 11 11 6 23 11 11 19 2 18 11 11 17 11 12 11
 1 12 12 12 12 21 4 24 7 12 12 12 12 2 19 12 17 18 12 12 11 12
 1 13 13 24 6 13 13 22 2 13 13 20 4 13 13 15 13 16 13 14 13 13
 1 14 14 14 14 7 23 14 14 19 3 4 20 14 14 14 16 14 15 13 14 14
 1 15 15 6 24 15 15 15 15 3 19 15 15 21 5 13 15 15 14 15 16 15
 1 16 16 16 16 23 7 2 22 16 16 16 16 5 21 16 14 13 16 16 15 16
 1 17 17 17 17 4 21 17 17 23 6 22 3 17 17 17 12 17 11 18 17 17
 1 18 18 5 20 18 18 7 24 18 18 3 22 18 18 11 18 12 18 17 18 18
 1 19 19 19 19 10 9 19 19 15 14 19 19 12 11 19 22 19 3 19 2 19
 1 20 20 18 11 20 20 20 20 10 8 14 13 20 20 5 20 20 21 4 20 20
 1 21 21 21 21 17 12 21 21 8 10 21 21 16 15 21 4 21 20 21 5 21
 1 22 22 22 22 9 10 16 13 22 22 18 17 22 22 22 19 2 22 3 22 22
 1 23 23 23 23 14 16 23 23 11 17 23 23 9 8 23 7 23 6 23 24 23
 1 24 24 15 13 24 24 18 12 24 24 24 24 8 9 6 24 7 24 24 23 24
 2 1 1 1 1 2 3 4 5 1 1 6 7 1 1 1 8 9 1 10 1 1
 2 2 2 2 2 8 1 13 16 2 2 2 2 11 12 2 3 22 2 2 19 2
 2 3 3 3 3 1 8 3 3 14 15 17 18 3 3 3 2 3 19 22 3 3
 2 4 4 4 4 12 17 9 1 4 4 4 4 13 14 4 21 5 4 4 20 4

Each of the other 26 cells has a corresponding coefficient block.

This approach supports tracking arbitrary subsets of cells.

Link: #0L44 “Data-Emulator.txt” in .zip
 & : #4L12-115 “Subroutine EmulatorRC()”

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 13 of 16 Free Setterholm

Concatenation Emulator:
This Emulator exploits the fact that scrambles can be connected to one another in
a continuous way. The left scramble is reordered to match the output locations
(nLAV below) of the right scramble after which the right scramble’s attitudes are
modified by the left scrambles attitudes. Two compact arrays and seven lines of
code accomplish this:

The first array maps Voter Attitudes to Locations. nLAV(1:24,0:27)
Link: #0L46 “Data-nLAV.txt” in .zip nL = nLAV(A , V)

The second array concatenates any two attitudes. AoutAAprev(1:24, 1:24)
Link: #0L43 “Data-AttConcat.txt” in .zip Aout = AoutAAprev(A ,Aprev)

The code is in #5L76-83 of Subroutine Concatenate():
76 !Concatenation is accomplished in the next 7 lines of code:
77 do nV = 1,VtotL
78 nVAprev(nV) = nLAV(VAprev(nV),nV)
79 VAnextmod(nV) = VAnext(nVAprev(nV))
80 if(VAprev(nV) == 0) cycle
81 if(VAnextmod(nV) == 0) cycle
82 VAnewL(nV) = AoutAAprev(VAnextmod(nV),VAprev(nV))
83 enddo!nV

An example:
Concatenate in previous`s order: ----------
 nV : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Move Choice *2’s scramble:
A VAprev : 3 1 3 1 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 :previous
 : c a c a c a c a a c a a c a c a a c a a
Move Choice #6’s scramble:
A VAnext : 5 5 1 1 5 5 1 1 5 1 1 1 5 5 1 1 5 1 1 1 :pre-morph
 : e e a a e e a a e a a a e e a a e a a a

n nVAprev : 3 2 7 4 1 6 5 8 9 15 11 12 10 14 18 16 17 13 19 20 :morph

A VAnextmod: 1 5 1 1 5 5 5 1 5 1 1 1 1 5 1 1 5 5 1 1 :post-morphed
 : a e a a e e e a e a a a a e a a e e a a
Resulting scramble:
A VAnew : 3 5 3 1 15 5 15 1 5 3 1 1 3 5 3 1 5 15 1 1 :concatenation
 : c e c a o e o a e c a a c e c a e o a a

Array AECAV(C,A,V), the Move Choice Emulator on the previous page,
produces the same result, but can only left-concatenate single moves:

Choice: Scramble:
 0 : aaaaaaaaaaaaaaaaaaaa
 2 : cacacacaacaacacaacaa
 6 : cecaoeoaecaacecaeoaa

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 14 of 16 Free Setterholm

R2 Zone use- The 2x2x2 Solver:

After unpacking #0L10 MS-RC-Zip & renaming MS-RC-64.exf to MS-RC-64.exe:
The previous Zone use run summary is:
 #0L62 R2-ZoneUse-Summary.txt -will be overwritten if UtIn=13.

Set: #0L61 R2-ZoneUse.nml
as the first line of: #0L53 MS3.ini
and then run: #0L40 MS-RC-64.exe

The first run prompt is:
 Use this free software at your own risk:
 Press enter to continue -or-
 Close this command prompt window.

After the Zone for 2x2x2 corners is loaded, the instructions are:
||
Move = 0 closes this program.

Negatives of the Ein%MCvis Move Sequence values above will deconstruct
the scramble to solved, demonstrating post-multiplication.

Otherwise, pick any move that reduces the Discord of a Zone, &
thus the 2x2x2 RC will solve in a mimimum number of moves.

Move#0 shows the individual zone Discord(s) and the order(s).
 Order: the number of self-concatenations to solved.

now = ____ sums the values of Zone#2 & #3 for 3x3x3`s.
||
Previous move [-18:18] = 0
cVAin = lgpebela............ <- the present scramble
Ztot = 1 Discord: Order:
Move# Attitudes: Zone#: 1 : 1
-17 -H tmfqbela............ 12 7
-15 -F dspewkla............ 12 9
-13 -D rgceoera............ 12 15
-10 -A bdkabela............ 13 18
 -9 -9 jruvbela............ 13 36
 -6 -6 napeslla............ 11 6
 -5 -5 kbpeipla............ 11 30
 -2 -2 hgxexeua............ 13 36
 -1 -1 eggegeaa............ 11 6

 0 0 lgpebela............ 12 7 <- Move = 0 closes the program

 1 +1 lgwkheua............ 11 36
 2 +2 lggraeda............ 11 6
 5 +5 xgbebaxa............ 11 6
 6 +6 ggvebiga............ 11 30
 9 +9 lapoboba............ 11 18
 10 +A ljppbpsa............ 11 36
 13 +D lgntceqa............ 12 15
 15 +F rgmebdra............ 12 9
 17 +H lfpubuka............ 12 7
 max: 14 Any one of 9 moves will reduce the discord to 11:
 Pre-multiplies: Post-multiplies: -6.-5,-1,+1,+2,+5,+6,+9,+10
Move#`s: 1 2 13D 3 4 14E -1 -2 -13 -3 -4 -14
 5 6 15F 7 8 16G -5 -6 -14 -7 -8 -16
 9 10A 17H 11B 12C 18I -9 -10 -17 -11 -12 -18
 -: -90 +90 180 +: -90 +90 180 -: -90 +90 180 +: -90 +90 180
 X: 11 11 12 0 0 0 11 13 12 0 0 0 :Z#1
 Y: 11 11 12 0 0 0 11 11 12 0 0 0 now = 12
 Z: 11 11 12 0 0 0 13 13 12 0 0 0
||
Next move [-18:18] =

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 15 of 16 Free Setterholm

R3 Zone use - 3x3x3’s: after unpacking the .zip file #0L10
The previous Zone use run summary is:
 #0L66 R3-ZoneUse-Summary.txt <- two excerpts are shown below:
Set: #0L65 R2-ZoneUse.nml known post-multiplies solving Zone#1:
as the first line of: #0L53 MS3.ini
and then run: #0L40 MS-RC-64.exe

||
Previous move [-18:18] = 0
cVAin = gjwmwovndrjnrbkvsvhv a Zone#1, #2,& #3 scramble:
The current scramble, pre-mult`s on left, post-mults on right:
Moves:(23:1) = +D,+A,+5,+2
 ,+A,+D,+5,+1,+A,+2,+5,+A,+1,+5,+1,+D,+6,+1,+G,+9,+1,+7,+3,
||
Previous move [-18:18] =-16
cVAin = lshlrvnaxlolxvwasxaa reduced to a Zone#2 & #3 scramble:
The current scramble, pre-mult`s on left, post-mults on right:
Moves:(28:1) = +D,+A,+5,+2,+A,+D,+5,+1,+A
 ,+2,+5,+A,+1,+5,+1,+D,+6,+1,+G,+9,+1,+7,+3,-3,-7,-1,-9,-G,
Ztot = 3 Discord: Order:
Move# Attitudes: Zone#: 1 2 3 : 1 2 3
-18 -I lshljobkxlolxvwajjwc 8 -1 -1 60 30 12
-17 -H qicqrvnaqnqwxvwasxaa 0 11 15 1 30 12
-16 -G lsiprvkjxloixvigsxak 6 -1 -1 24 8 12
-15 -F cqhlbknablolcfwafxaa 0 11 15 1 12 6
-14 -E lhhsrrnvxlhlxhwssxpa 8 -1 -1 24 8 6
-13 -D msllavraxgolfvgasraa 0 11 15 1 12 8
-12 -C lshlcefpxlolxvwaifnf 7 -1 -1 210 21 20
-11 -B lshlmgtsxlolxvwagogh 8 -1 -1 30 6 20
-10 -A xddnrvnaddisxvwasxaa 0 12 14 1 7 10
 -9 -9 ouuwrvnachuuxvwasxaa 0 12 16 1 6 10
 -8 -8 lssdrvuwxlodxvsdsxap 6 -1 -1 10 15 20
 -7 -7 lsgtrvebxlonxvebsxae 5 -1 -1 30 45 20
 -6 -6 krhlscnarlolokwaoxaa 0 12 16 1 12 12
 -5 -5 vbhlqlnamlollmwaqxaa 0 12 14 1 12 12
 -4 -4 ljhirbnxxljlxbwesxba 8 -1 -1 60 45 12
 -3 -3 lghcrjnixlclxuwcsxia 4 -1 -1 60 15 12
 -2 -2 gsxldvcaxrolrvxasqaa 0 10 16 1 12 12
 -1 -1 bstlgvxaxkolgvlaslaa 0 12 16 1 12 12

 0 0 lshlrvnaxlolxvwasxaa 0 11 15 1 18 4

 1 +1 ljclrigaololoinasxaa 0 12 14 1 12 12
 2 +2 liblrjwamlolmjpasxaa 0 10 14 1 12 12
 3 +3 ushuevnbxuouxvwbsxba 1 -1 -1 60 45 12
 4 +4 dshdtvncxdodxvwcsxca 1 -1 -1 60 15 12
 5 +5 xstlgvsaxxolrvwaoraa 0 12 14 1 12 12
 6 +6 gsulxvcaxgollvwanlaa 0 12 14 1 12 12
 7 +7 lohxrpndxlclxvkdsxad 1 -1 -1 10 15 20
 8 +8 lnhgrmnexlslxvqesxae 1 -1 -1 30 45 20
 9 +9 lshbcrdaxlubxrwashaa 0 12 16 1 7 10
 10 +A lshsvqtaxlesxqwasiaa 0 12 16 1 6 10
 11 +B blwlrvnfhlolxvwalxff 1 -1 -1 210 21 20
 12 +C skxlrvngilolxvwakxgg 1 -1 -1 30 6 20
 13 +D lvalrspaflolfsgasxaa 0 11 15 1 12 8
 14 +E qshqkvnhxqoqxvwhsxha 2 -1 -1 24 8 6
 15 +F rsjllvoaxrolgvwacgaa 0 11 13 1 12 6
 16 +G lchrrbnixlnlxvfisxai 2 -1 -1 24 8 12
 17 +H lshkqcmaxlpkxcwaswaa 0 13 15 1 30 12
 18 +I kbilrvnjwlolxvwabxjj 2 -1 -1 60 30 12
 max: 9 14 18
 Pre-multiplies: Post-multiplies:
Move#`s: 1 2 13D 3 4 14E -1 -2 -13 -3 -4 -14
 5 6 15F 7 8 16G -5 -6 -14 -7 -8 -16
 9 10A 17H 11B 12C 18I -9 -10 -17 -11 -12 -18
 -: -90 +90 180 +: -90 +90 180 -: -90 +90 180 +: -90 +90 180
 X: 0 0 0 1 1 2 0 0 0 4 8 8 :Z#1
 Y: 0 0 0 1 1 2 0 0 0 5 6 6 now = 0 solved
 Z: 0 0 0 1 1 2 0 0 0 8 7 8
 ----------- ----------- ----------- -----------
 X: 26 24 26 -1 -1 -1 28 26 26 -1 -1 -1 :Z#2+Z#3
 Y: 26 26 24 -1 -1 -1 26 28 26 -1 -1 -1 now = 26
 Z: 28 28 28 -1 -1 -1 28 26 26 -1 -1 -1
||
Previous move [-18:18] = 0

This solves the remaining edges, or remaining corners, but not both!
… Which introduces a niftier 2nd challenge:

January 28, 2025 Min-Steps.pdf , vsn.:1.0 Page 16 of 16 Free Setterholm

Challenge #2: Realizing uncommon “common sense”:

“Common sense” is poorly defined, but involves being aware enough to avoid
catastrophes caused by the unforeseen secondary and tertiary consequences of
personal decisions. Making CAD-assisted choices which avoid catastrophes
implicitly will eclipse common sense. To do that, multiple wisdom Zones need to be
navigated simultaneously.

‘Zone use - 3x3x3’ on the previous page realizes a decision environment in which
there are three Zones of wisdom. Zones #1, #2, & #3 are separately wise within
their Zones. However, in my experiments, they have not yet solved deep
scrambles (e.g. 40 random 18-Choice Moves), let alone solve them in a minimum
number of steps.

For the 3x3x3 Rubik`s Cube: three wisdom Zones now exist (see page 11), so
challenge #2 is a defined problem:

Challenge #2:

Demonstrate unifying multiple Zones into
a minimum-step 3x3x3 Rubik’s Cube solution

within a WisdomCAD environment.

Perhaps the solution algorithms are already known,
e.g.: by people who program auto navigators.

The future offers CAD-based wisdom, even for hobbyists.

Efficient earthly cooperation is imaginable.

Afterthoughts:

1. ‘Min-Steps’, this paper, is a ‘discrete optimal control’ paradigm.

2. “WisdomCAD” =

“The unification of ‘the common good’, optimal control, and CAD.”

3. Challenge #3: Demonstrate Artificial Intelligence (‘AI’)
contributing to World Peace

in a learnable way.

4. Challenge #4: “Begin working on WisdomAI“
Pry ‘intelligence’ from the grip of guile using artificial means.

5. Given what I learned: “I was dumber than a Rubik’s Cube” lingers as
 an amusing refrain. My thanks to Mr. Rubik, for his fully-cooperative puzzle.

